
# SiD Tracking Simulation: Status and Plans

Richard Partridge for the SiD Tracking Group

Vancouver Linear Collider Workshop July 19-22, 2006

# • S.D. Tracking Simulation

Tracking simulation is a multi-layered effort



### • Starting point: COMPACT XML file to specify geometry

<detector id="13" name="TrackerBarrel" type="MultiLayerTracker" readout="TkrBarrHits">

<layer id="1" inner\_r = "20.000\*cm" outer\_z = "26.7\*cm">

<slice material = "PEEK" thickness = "0.02\*cm" />

<slice material = "Rohacell31" thickness="0.14\*cm" />

<slice material = "Epoxy" thickness="0.0175\*cm" />

<slice material = "CarbonFiber" thickness=".016\*cm" />

<slice material = "Silicon" thickness = "0.03\*cm" sensitive = "yes" />

<slice material = "Silicon" thickness = "0.00048\*cm" />

<slice material = "Kapton" thickness = "0.0038\*cm" />

<slice material = "Copper" thickness = "0.00038\*cm" />

</layer>

Relatively easy to change tracker geometry!

- Simulation package (SLIC) produces a "SimTrackerHit" when a particle deposits energy in a sensitive layer
- MC Generation tools are mature and stable

# • S.D. • Tools - Hit Digitization

- Detector hits are not created during GEANT simulation
  - » Allows readout segmentation to be changed without re-running GEANT

### To form hits:

- Charge deposition
  - » Turn energy deposits into charge on nearby strips
  - » Include Lorentz angle, diffusion, capacitive coupling, noise
- Readout Segmentation and Clustering
  - » Map strip charges onto the readout segmentation
  - » Sum charges when multiple particles produces charge on the same strip
  - » Find clusters of strips and form "TrackerHit" with hit position and error

### • SD • Tools - Track Finding

#### Several approaches being taken in track finding:

### Conformal Mapping

- » Conformal mapping of circular trajectory to a straight line
- » Current package works from 3D hits needs strip digitization + ghosting
- » Results presented in tracking meetings for forward tracking
- Vertex Seeded Tracking
  - » Find track seed in vertex tracker and pick up hits in outer tracker
  - » Results presented in tracking meetings using MC truth for vertex seeds
- Calorimeter Seeded Tracking (Garfield)
  - » Find MIP stubs in calorimeter and pick up hits in outer tracker
  - » Can be used to find long-lived secondaries ( $K_S$ ,  $\Lambda$ , etc.)
- Stand-alone Outer Tracking
  - » Find track candidates using outer barrel tracker

### • S.D. Tools - Track Fitting

Goals:

- Given a collection of hits, find the helix that best fits the hits
- Determine the error matrix for the helix parameters
- Provide the ability to swim the track parameters, error matrix to any point on the track (e.g., production vertex, calorimeter entrance, etc.)

#### Approaches:

- Weight Matrix
  - » Performs a  $\chi^2$  fit of hits to a helix including multiple scattering correlations

### Kalman Filter

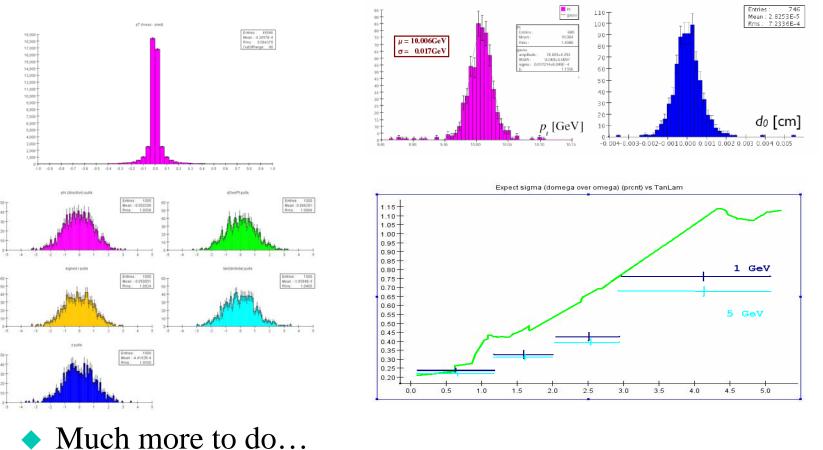
» Uses Kalman Filter to adapt trajectory for observed multiple scattering

# • SD • Tools - Who is Doing What?

| Task                        | People                              |
|-----------------------------|-------------------------------------|
| CCD Digitization            | Nick Sinev                          |
| Strip Digitization          | Tim Nelson                          |
| Conformal Map Tracking      | Norman Graf                         |
| Vertex Seeded Tracking      | Fred Blanc, RP, Steve Wagner        |
| Calorimeter Seeded Tracking | Dima Onoprienko, Eckhard Von Toerne |
| Stand Alone Outer Tracking  | Tim Nelson                          |
| Weight Matrix Fitter        | Nick Sinev                          |
| Kalman Filter Fitter        | Fred Blanc, Norman Graf             |

# · SiD · Tool Status

| Tool          | Variant                     | Status        |
|---------------|-----------------------------|---------------|
| MC Simulation | SLIC                        | Released      |
| Digitization  | Pixel (CCD) Digitization    | Released      |
|               | Strip Charge Deposition     | Complete      |
|               | Strip Readout Segmentation  | In Progress   |
| Track Finding | Conformal Map Tracking      | Released*     |
|               | Vertex Seeded Tracking      | In Progress   |
|               | Calorimeter Seeded Tracking | Released*     |
|               | Stand Alone Outer Tracking  | Released*     |
| Track Fitting | Weight Matrix Fitter        | Complete      |
|               | Kalman Filter Fitter        | In Progress** |


\* Currently uses smeared hits \*\* Complete for Conf. Map Tracking

# • SD • Near-Term Tool Milestones

| Milestone                                  | Completion |
|--------------------------------------------|------------|
| Reconstruction of Vertex Seeds             | July       |
| Vertex Seeded Tracking using Reconstructed | August     |
| Vertex Seeds                               |            |
| Hit Digitization for Barrel Strips         | September  |

### • SD • Tracking Analysis

- Use tracking tools to characterize / optimize tracker design
- Some preliminary results shown at VLCW06





Vancouver Linear Collider Workshop

### • SD • Tracking Characterization

- Study rudimentary tracking performance measures that characterize tracker performance
- Largely independent of physics process
- Provides most direct feedback for tracker optimization
- Track Resolution
  - » pT, direction, impact parameters in bend and non-bend planes
- Tracking Efficiency
  - » pT dependence, polar angle dependence, jet core vs isolated track
- Fake track rates
  - » pT dependence, polar angle dependence, jet core vs isolated track
- Effect of backgrounds on tracker performance
  - » Produce high occupancy at low radius
  - » Potential impact on tracking performance, readout electronics design

### • SD • Optimization of Tracking Geometry

- Software framework is designed to allow study of detector variations with full simulation / reconstruction
- Tracking routines make use of geometry information used to generate events, so extensive tuning / coding is (hopefully) not required

#### Some pertinent questions:

- Does the baseline design have the right number of layers?
- Is an equal radial spacing of barrel layers optimal?
- Are we able to adequately project out from the vertex detector to the first layer of the outer tracker?
- Is the barrel / disk transition optimally located?
- Is there sufficient / excessive overlap of sensors?

### • SD • Forward Tracker Design

- Ideally, a group would take "ownership" of the forward tracker design
- The pair background, decreasing lever arm make this a challenging region for tracking

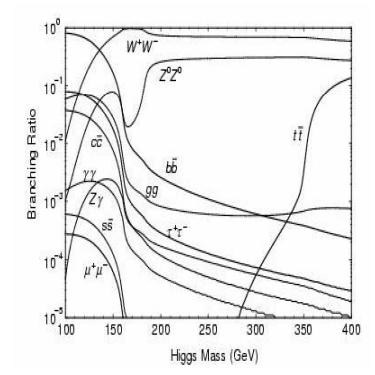
#### Many open questions:

- Sensor shape: Square? Wedge? Hexagon? Other?
- Strip orientation: x, y? Also u, v? small angle stereo? r, φ?
- How many layers? Where are they?
- What is the smallest sensible tracking angle?
- Is occupancy acceptable for KPix design?
- Should we have forward pixel disks at low radius?
- How are the sensors supported?

### • SD • Long-Lived Secondary Tracking

- $K_S$ ,  $\Lambda$  will typically decay outside the vertex detector
- Boosted B mesons sometimes have large decay lengths also
- Simulations in hep.lcd framework typically found 5% tracking inefficiency due to non-prompt tracks
- In baseline design, barrel region has only axial strips
  - » Only coarse measurement in r-z plane from readout segmentation
  - » Poor precision in track polar angle, r-z impact parameter

#### To be studied:


- Calorimeter seeded tracking performance / optimization
- Improvement from having >0 stereo barrel layers
- Physics impact of not reconstructing long-lived secondaries

### • SD • Heavy Flavor Identification

- Efficient identification of b and c quarks is a critical requirement to meet ILC physics goals
- Example: Higgs branching ratios
- Need to optimize tracking for heavy quark tagging efficiency
- Requires secondary vertexing code
  - » ZVTop has been ported to org.lcsim

#### To be studied:

- Characterize tagging performance
- Dependence on inner radius
- Optimal radii and length of layers



# • SD • Physics Benchmarking

- Tracker performance potentially impacts a wide variety of physics processes
- ILC physics performance is the ultimate goal of the design optimization
- Benchmarks will be important in the comparison of the SiD concept and brand X

Some possible benchmarks:

- pT resolution as it affects the Higgs recoil mass resolution
- Higgs branching ratio precision (tagging efficiency / fakes)
- Impact of material on PFA jet energy resolution
- Need a good benchmark for forward tracking performance!



| Task                          | People                    |
|-------------------------------|---------------------------|
| Tracking Characterization     | Bruce Schumm + students   |
| Tracker Geometry Optimization | ?                         |
| Forward Tracker Design        | ?                         |
| Long-Lived Secondaries        | Dima and Eckhard? Others? |
| Heavy Flavor Identification   | Caroline Milstene         |
| Physics Benchmarking          | ?                         |

# • SiD • Summary

- A plan for developing tracking tools was generated at Snowmass
- There has been progress in all areas, but in many cases the rate of progress has been slow
- We are getting close to having all the pieces in place, commitments have been made to complete these efforts
- While there will be continuing development of the tools, our greatest need is for people to get involved in the tracking analysis and tracker optimization
- This is the fun part!
- If you are interested in getting involved, please get in touch with Marcel or myself