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1. INTRODUCTION

X THE PHYSICS CASE: EWSB/SUSY/QCD

AAAAAA– Higgs: Hγγ coupling: qu-effect: window to high scales

AAAAAA extended mass reach for heavy Higgs

AAAAAA CP violation ∼ beam polarization

AAAAAA– Charged particles: W±-boson, top-quark multi-pole moments

AAAAAA– SUSY: extd mass reach for selectrons ẽ in ass with light neutralino

AAAAAA mass measurement of sneutrino ν̃e

AAAAAA– QCD: mechanism for total hadronic cross section

AAAAAA γ quark/gluon : DIS eγ

AAAAAA high pT jets

AAAAAA– Varia: Majorana neutrinos, e∗, etc 2
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Two-Photon Collisions in the Standard Model
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polarized back-scattered laser beams, one can in principle 

study yy + W+W- production as a function of the initial 

photon helicities as well as resolve the W helicities through 

their decays. The study of yy + W+ W- is complimen- 

tary to the corresponding efe--+ W+W- channel, but 

one can also check for the presence of anomalous four-point 

yy --) WW interactions not already constrained by electro- 

magnetic gauge invariance, such as the effects due to W * 

exchange. 

The cross section for yy + WW at a TeV linear col- 

lider rises asymptotically to a constant because of the 

spin-one t-channel exchange: ag,,,,(yy + WW) = 

81r~u’/M& = 80 pb. This is a rather large cross section: a 

linear yy collider with a luminosity of lo-20 fb-’ will 

produce of the order of one million W+ W- pairs [23]. 

A main focus of the pair production studies will be the 

values of the W magnetic moment cc, = (e/(2mw)) (1 - 

K  - A) and quadrupole moment Q, = -(e/M&) (K - h). 

The standard model predicts K  = 1 and A = 0, up to 

radiative corrections analogous to the Schwinger correc- 

tions to the electron anomalous moment. The anomalous 

moments are thus defined as p* = pw - e/M, and Q* 

= Q, + e/M& 
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Fig. 4. Illustration of direct, resolved, and higher-order loop 

contributions to high energy yy collisions. 
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Fig. 5. Representative cross sections for W+ W- production and 

other electroweak reactions at a yy and ei- e- linear collider. The 

top mass is taken as 130 GeV. The other subscripts refer to the 

mass of the Higgs (in GeV). The Higgs mass is set to zero for the 

reactions e+e- + W+ W- vV and e+e+ + ZZvl (from Refs. 

[27,63,22]). 

The fact that cc, and QA are close to zero is actually a 

general property of any spin-one system if its size is small 

compared to its Compton scale. For example, consider the 

Drell-Hearn-Gerasimov sum rule [37] for the W magnetic 

moment: & = ( I_C - e/M)* = (l/n)/~~(dv/v)[ar(v) - 

a&)1. Here ‘+p(,c,) is the total photoabsorption cross 

section for photons on a W with (anti-) parallel helicities. 

As the radius of the W becomes small, or its threshold 

energy for inelastic excitation becomes large, the DHG 

integral and hence & vanishes. Hiller and Brodsky have 

recently shown [38] that this argument can be generalized 

to the spin-one anomalous quadrupole moment as well, by 

considering one of the unsubtracted dispersion relations for 

near-forward y spin-one Compton scattering [39]: 
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Here Y = (s - u)/4. One again sees that in the point-like 

or high threshold energy limit, both pa + 0, and QA + 0. 

This result applies to any spin-one system, even to the 

deuteron or the p. The essential assumption is the exis- 

tence of the unsubtracted dispersion relations; i.e., that the 

anomalous moments are in principle computable quanti- 

ties. 
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P.M. Zerwas and SJB
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γγ Cross sections

AAApointlike : γγ ∼ 3 to 10×e+e−

AAAexamples : t, W±, H±, ẽ, χ̃±, ...

AAAlarge size : 10 to 105 fb ⇒
AAA 103 to 107 evts

AAA for L = 100 fb−1
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Illustrations of  High-Energy Two-Photon Collisions
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2. ELECTROWEAK SYMMETRY BREAKING

Xa) LIGHT HIGGS IN γγ COLLISIONS

X

σγγ = Γγγ σ̂ dL/dm2
γγ(M2

H)

– sharp onset for polarized beams

– helicities λ1 = λ2 enh. signal / sup. bkgd

X
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2. ELECTROWEAK SYMMETRY BREAKING

X

Γγγ sensitivity to:

a) SUSY loop contributions

F: Djouadi

b) H± loop in general 2HDM

c) pseudoscalar ηLH in Little Higgs

d) KK in extra-space dimensions
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2. ELECTROWEAK SYMMETRY BREAKING

X

Γγγ sensitivity to:

a) SUSY loop contributions

b) H± loop in general 2HDM

F: Ginzburg, Krawczyk, OslandX
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2. ELECTROWEAK SYMMETRY BREAKING

X Γγγ sensitivity to:

a) SUSY loop contributions

b) H± loop in general 2HDM

c) Little Higgs dof’s ∼ sev. TeV

F: Logan
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2. ELECTROWEAK SYMMETRY BREAKING

X Γγγ sensitivity to:

a) SUSY loop contributions

b) H± loop in general 2HDM

c) Little Higgs [width/pseudoscalar]

d) KK in extra-space dimensions

F: Lillie
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Invariant Mass Spectrum
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NŻK

SM, Mh = 120 GeV

Final results
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Introduction
LHC wedge

From: CMS NOTE 2003/033
(the same results as in newer CMS CR 2004/058)

Two analyses
with MSSM parameter set:

MA = 300 GeV
tanβ = 7, M2 = µ = 200 GeV

MKSZ
M. Mühlleitner, M. Krämer, M. Spira,

P. Zerwas, Phys. Lett. B 508 (2001) 311.
S/B ≈ 35

(300 ± 3 GeV)

NŻK
P. Nieżurawski, A.F. Żarnecki, M. Krawczyk,

Acta Phys. Pol. B 37 (2006) 1187.
S/B ≈ 2

(300 ± 5 GeV, only γγ → bb̄(g) background)

ILC-Valencia M. Krawczyk, M. Spira, P. Niezurawski, A. F. Żarnecki 6-10.11.2006 – p.2/20



NŻK: Precision at PLC
Precision of σ(γγ → A, H → bb̄) measurement

Results for MA = 300 GeV
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H and A contributions

We can not distinquish H and A contributions

A.F.Żarnecki First results on H and A production with linear photon polarization 2



Luminosity

Luminosity spectra for linear laser polarization. Ee = 250 GeV

CAIN simulation results
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A.F.Żarnecki First results on H and A production with linear photon polarization 3

Background increases by factor ∼ 2. Signal down by factor ∼ 5 !



1 Introduction

Four-fermion production at a future γγ collider:
• large γγ → WW → 4f cross section: σtotal → 80 pb at high energies

↪→ precision signal / background to new physics
• test of γWW and γγWW couplings
• s-channel Higgs production γγ → H → WW/ZZ → 4f

Requirements from theory:

Predictions at %-level or better achieved by
• thorough description of decays of resonant gauge bosons
• inclusion of radiative corrections
• optional inclusion of non-standard gauge-boson couplings
• special improvements for Higgs production

Requirements neither fulfilled by multi-purpose Monte Carlo generators
nor by previous dedicated analyses !

⇒ Motivation for constructing the dedicated event generator COFFERγγ

to fill this gap

LCWS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ → W W → 4 fermions (+γ) – 3



2 The Monte Carlo generator

γγ 4f Bredenstein,
S.D., Roth ’04–’05Features of the generator COFFERγγ

(COrrections to Four-FERmion production in γγ collisions)

• Complete lowest-order matrix elements
� compact results in terms of Weyl–van-der-Waerden spinor products
� massless fermions (mass effects restored in corrections)
� loop-induced or effective γγH coupling
� anomalous triple and quartic gauge-boson couplings

• Radiative corrections to γγ → WW → 4f(+γ)

in “double-pole approximation” (DPA) similar to e+e− case
Aeppli, v.Oldenborgh, Wyler ’93; Beenakker, Berends, Chapovsky ’98
Jadach et al. ’99; Denner, S.D., Roth, Wackeroth ’99

• Multi-channel Monte Carlo integration with adaptive weight optimization
Berends, Kleiss, Pittau ’94 Kleiss, Pittau ’94

• Realistic γ beam spectrum, e.g., by COMPAZ Zarnecki ’02

Note: all parts checked by a second independent Monte Carlo generator !

LCWS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ → W W → 4 fermions (+γ) – 4



A FORTRAN code for ggÆZZ in SM and MSSM
G.J. Gounaris

Based on the publications:

• Th. Diakonidis , GJG, J. Layssac, hep-ph/0610085

• GJG, P. Porfyriadis, F.M. Renard, Eur. Phys. J. C19:57 (2001),                   
hep-ph/0010006.

• GJG, P. Porfyriadis, J. Layssac, F.M. Renard, Eur. Phys. J. C13:79(2000),       
hep-ph/9909243.

•The whole code is contained in the file gamgamZZ.tar.gz downloaded 
from

http://users.auth.gr/~gounaris/FORTRANcodes/ 

It contains 4 sub-codes called, sm1, mssm1, sm2 and mssm2.                         
A Readme.dat file explains everything.                                      
Real SM and MSSM parameters are assumed.
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Cross sections for polarized e± beams, integrated over the 
azimuthal angles in SM
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if mH large.
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PLC

For resonant γγ → h → W+W− signal
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2. Observables in γγ→
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MSSM  (tanβ=3)
mA=400.0 GeV
mH=403.8 GeV
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LHC ⊕ ILC ⊕ PC

Measurements at LHC, ILC and Photon Collider are complementary,
being sensitive to different combinations of Higgs-boson couplings

Cross sections × BR relative to SM MH = 250GeV
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Charge asymmetry in

γγ → µ+µ−+ ν
′
s, γγ → W±µ∓ + ν

′s with

polarized photons.

New results
I. F. Ginzburg, K.A. Kanishev,

Sobolev Inst. of Mathematics, SB RAS
and Novosibirsk State University

Novosibirsk

M. Cannoni, O. Panella
Istituto Nazionale di Fisica Nucleare,

Perugia, Italy
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• Charge asymmetry in processes like

γγ → µ+µ−νµν̄µ, γγ → W±µ∓ν

appears due to P nonconservation in the SM.

• Processes like

γγ → τµνν (γγ → Wτν) → µ+µ−νννν (Wµννν)

(with τ → µνµντ decay) produce the same observable final state

enhancing total event rate by 37% (17%). We consider such cascade

processes.

• Taking into account same effects for e+ e−, e+ µ−, µ+ e− enhance

statistics by 4 times.
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Difference between distributions of positive and
negative muons in γλ1

γλ2
→ Wµν.

Both photons are left polarized: γ−γ−.
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4. STRONG INTERACTIONS AND QCD

γγ → hadrons : variety of models : standard SI [γ ∼ P ] Donnachie, Landshoff

X F: Block, Gregores, Halzen, Pancheri

pQCD / mini-jet models
X Badelek, Krawczyk, Kwiecinski, Stasto

X Godbole, Pancheri
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Valencia-9th november, 2006G. Pancheri - Total hadronic cross-
ections from LHC to ILC
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σ=Bs-η + Asε+ Csε1

• Fit3
C≠ 0    ε=0.093
            ε1=0.418

• Fit 1
C=0     ε=0.250

• Fit2
C=0     ε=0.093 as in pp
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MAJORANA NEUTRINOS

PROCESS: e−γ → e+ W−W−

X

specific Majorana N signal /

sizable cross section for XeN = 0.07 X ⇒

little SM bkgd: CC e−γ → νe W−W−W+

[Bray, Lee, Pilaftsis]
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Reaction Remarks

→ H,h→ b̄b SM/MSSM Higgs, MH,h < 160 GeV

→ H →WW(∗) SM Higgs, 140< MH < 190 GeV

→ H → ZZ(∗) SM Higgs, 180< MH < 350 GeV

→ H → γγ SM Higgs, 120< MH < 160 GeV

→ H → tt SM Higgs, MH > 350 GeV

→ H,A → b̄b MSSM heavy Higgs, interm. tan β

→ f̃ ¯̃f, χ̃+
i χ̃

−
i large cross sections

→ g̃g̃ measurable cross sections

→ H+H− large cross sections

→ S[t̃¯̃t] t̃¯̃t stoponium

→ ẽ−χ̃0
1 Mẽ− < 0.9 × 2E0 −Mχ̃0

1

γγ → γγ non-commutative theories

eγ → eG extra dimensions

γγ → φ Radions

eγ → ẽG̃ superlight gravitions

→W+W− anom. W inter., extra dimensions

→W−νe anom.W couplings

→ 4W/(Z) WW scatt., quartic anom. W ,Z

→ tt̄ anomalous top quark interactions

t̄b anomalous Wtb coupling
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