How to optimize the ILC energy for measuring ZH Preliminary

LAL/Orsay

Introduction

- Usual ILC scenario for ZH(120): 500 fb-1 at \sqrt{s} =350 GeV (the top threshold)
- Here we show that running at √s~Mh+100 is more adequate since one has:
 - $\sigma(HZ)$ twice larger if Mh=120 GeV
 - the recoil mass for H\mu is 3 times better
- Also it seems much more useful to spend luminosity at maximum ILC energy but, there, the mass resolution is unacceptable

Running at 350 GeV

- TESLA TDR at 350 GeV: σ_{Mh} =1.5 GeV in H $\ell\ell$
- This goes like E_{CM}p²
- At 220 GeV ~3 times better
- Similar gains are observed in the hadronic mode

Running at 220 GeV

- Threshold scan is needed
- Fast rising σhZ
- Objections:
- Undulator? To be checked
- How does £ vary with s?
- Beamstrahlung

Beamstrahlung

- Formula where $x=E/E_0$ at the beam level $f(x) = a_0 \delta(1-x) + a_1 x^{a_2} (1-x)^{a_3}$
- There is a 'hard-core' with $a_0 \sim 0.5$ at 500 GeV
- + a peaked distribution
- -> With a better momentum resolution there is always improvement

How does \mathcal{L} vary with E?

• \mathcal{L} can be maintained constant with s provided δ is taken constant:

$$L {\sim} \eta rac{P_{ ext{ electrical}}}{E_{\mathit{CM}}} \sqrt{rac{\mathcal{S}_{\mathit{E}}}{arepsilon_{\mathit{n,y}}}} H_{\mathit{D}}$$

$$\delta = E_{CM} \frac{N^2}{\sigma_z \sigma_x^2}$$

- If N is constant (particles/bunch) P_{electrical} goes like Ecm
- If one maintains δ constant \mathcal{L} constant means more focusing in x and/or shorter bunches
- One has to choose an optimum

Spectra

- For $H\mathscr{U}$ gain of 3 with δ constant
- For Zqq similar gain
 - -> Better s/b
- Possibility to improve on invisible decays where only 1 C works: Gain on 3x2 on ∫∠dt

Comparisons

ECM	σ(Η <i>ℓ</i> ℓ) fb	p ℓ GeV	σMh MeV K=510-5	£(110 MeV) fb-1
500	4	122	4900	18000
350	7	83	1500	500
240	14	54	540	15
222	13	49	430	15

Measuring the Higgs width?

- Hopeless below 170 GeV
- How does Γ_h affect σ_h ?

$$\sigma \rightarrow \sigma + 0.65\Gamma/2$$

 Note also that does not depend on Mh provided that one works near threshold

Results

For Mh=170 GeV

ECM	$\sigma(H\ell\ell)$ fb	Pℓ GeV	σMh MeV	\mathcal{L} (20%) fb-1
350	5	71.5	843	1200
280	4	50	400	300

Conclusions

- If Mh=120 GeV, there are many good reasons to run at ~220 GeV
- Spin determination
- Maximum cross section
- Best possible mass resolution
- We should therefore see what are the limitations on the Machine side