Identifying contactlike effective interactions at polarized ILC

N. Paver

University of Trieste & INFN-Sezione, Trieste, Italy

ILC-ECFA Meeting 6 – 10 November 2006, Valencia, Spain

Introduction

A Plethora of *New Physics* (NP) beyond the SM [conceptual problems] It is generally expected that NP will manifest itself at future colliders either:

- directly, as in the case of new particle production (Z' and W' vector bosons, SUSY, Kaluza-Klein (KK) resonances...)
- indirectly through deviations of observables from SM predictions: typical case of NP interactions mediated by $heavy\ quanta\ exchanges$ $[\Lambda \gg M_{W,Z}]$ when collider energy is below production threshold.

In the case of **indirect** discovery, different NP scenarios may cause the same or similar experimental deviations.

Need for strategies to identify the source of corrections to SM predictions.

Proposed techniques:

- Monte Carlo-based analysis
 (G. Pasztor, M. Perelstein, hep-ph/0111471)
- Integrated cross sections weighted by Legendre polynomials (*T. Rizzo*, JHEP 0210 (2002))
- polarized Center-Edge Asymmetries [spin-1 vs. spin-2 exchange]
 (P. Osland, N. Paver, A.A. Pankov, Phys. Rev. D68 (2003);
 A.A. Pankov, N. Paver, Phys. Rev. D 72 (2005))
- here: combined χ^2 analysis of longitudinally polarized differential cross sections for $e^+e^- \to \bar{f}f$ ($A.A.\ Pankov,\ N.\ Paver,\ A.\ V.\ Tsytrinov$, Phys. Rev. D **73** (2006), hep-ph/0608285 and work in progress)

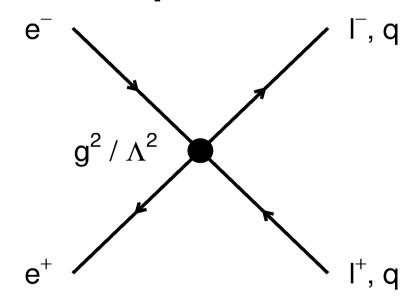
Outline

Phenomenology at the International Linear Collider (ILC) with e^- and e^+ polarized beams $\rm E_{C.M.}=0.5-1\,TeV$, (see G.Moortgat-Pick et al., hep-ph/0507011)

• Fermion pair production:

$$e^+e^- \to l^+l^- \ (l=e,\mu,\tau);$$

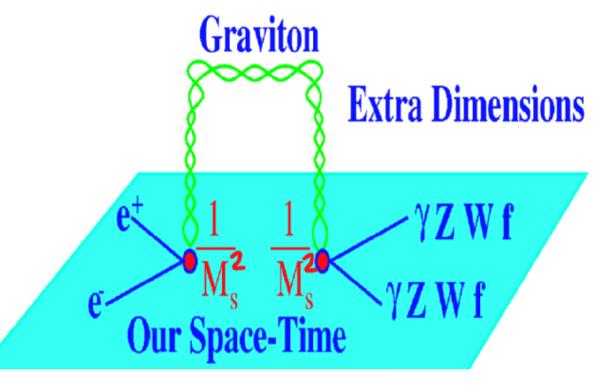
 $e^+e^- \to \bar{q}q \ (q=c,b)$


- observables: polarized differential cross sections ($d\sigma_{LL}$, $d\sigma_{RR}$, $d\sigma_{RL}$, $d\sigma_{LR}$)
- individual NP scenarios
- sensitivity to Λ 's
- rôle of beam polarization for identification reach enhancement

Nonstandard Scenarios

- Framework of effective Lagrangians (expansion in s/Λ^2)
- CI: Four-fermion contact interactions [compositeness]:

$$\mathcal{L}^{\text{CI}} = 4\pi \sum_{\alpha,\beta} \frac{\eta_{\alpha\beta}}{\Lambda_{\alpha\beta}^2} (\bar{e}_{\alpha}\gamma_{\mu}e_{\alpha}) (\bar{f}_{\beta}\gamma^{\mu}f_{\beta}),$$


$$\eta_{\alpha\beta} = \pm 1, 0; \ \alpha, \beta = L, R.$$

- ullet Can describe also exchanges of heavy Z', W', Leptoquarks, etc.
- Current limits on "compositeness scales" [Tevatron, LEP]: $\Lambda > 10 20 \, \mathrm{TeV}$

• ADD: Gravity in "large" compactified extra dimensions (gauge hierarchy)

Gravity only can propagate in the full 4+N space

Effective Planck mass M_* vs. compactification radius R and Newton constant $(M_{\rm PL})$:

$$M_{\rm PL}(10^{16}\,{\rm TeV}) = M_*^{(1+N/2)}R^{(N/2)}$$

For $N \geq 2$, $R \leq \text{mm}$: $M_* \sim \text{TeV}$ (standard model cut-off)

In the 4-dimensional space: virtual exchange of tower of spin-2 massive graviton KK excitations (spectrum spaced by 1/R).

Effective (contactlike) Lagrangian (Hewett convention):

$$\mathcal{L}^{\text{ADD}} = i \frac{4\lambda}{\Lambda_H^4} T^{\mu\nu} T_{\mu\nu}, \qquad \lambda = \pm 1$$

 $T_{\mu\nu}$: energy-momentum tensor of SM particles

 Λ_H : cut-off scale on KK summation (expected of TeV size).

Current lower limit: $\Lambda_H > 1.3 \, {\rm TeV}$

• TeV^{-1} -scale extra dimensions

Also SM gauge bosons may propagate in the additional dimensions: exchange of γ and Z KK excitations.

Effective (contactlike) interaction:

$$\mathcal{L}^{\overline{\text{TeV}}} = -\frac{\pi^2}{3M_C^2} \left[Q_e Q_f(\bar{e}\gamma_\mu e)(\bar{f}\gamma^\mu f) + (g_L^e \bar{e}_L \gamma_\mu e_L + g_R^e \bar{e}_R \gamma_\mu e_R) \times (g_L^f \bar{f}_L \gamma^\mu f_L + g_R^f \bar{f}_R \gamma^\mu f_R) \right].$$

 $M_C \gg M_{W,Z}$: inverse of the compactification radius

Current limit [LEP2]: $M_C > 6.8 \,\mathrm{TeV}$

Discovery reaches on Models

- $d\sigma \propto |SM + NewPhysics|^2$
- Deviations of observables from the SM predictions:

$$\Delta(\mathcal{O}) = \frac{\mathcal{O}(SM + NP) - \mathcal{O}(SM)}{\mathcal{O}(SM)}, \qquad \mathcal{O} = d\sigma/d\cos\theta$$

• deviations must be compared to foreseen experimental uncertainties $\delta \mathcal{O}$ [statistical plus systematic]:

$$\chi^2(\mathcal{O}) = \sum_{\{P^-, P^+\} \text{ bins}} \left(\frac{\Delta(\mathcal{O})^{\text{bin}}}{\delta \mathcal{O}^{\text{bin}}}\right)^2.$$

- Assumption: no deviation from the SM is observed within the experimental accuracy.
- Constraints on Λ_H , Λ 's [expected discovery reaches] from:

$$\chi^2(\mathcal{O}) \le 3.84 \quad (95\% \text{ C.L.})$$

Experimental inputs:

Bhabha and Møller scattering ($|\cos\theta|<0.9$, $\epsilon\simeq 100\%$, bin width: $\Delta\cos\theta=0.2$);

$$\mu^{+}\mu^{-}$$
, $\tau^{+}\tau^{-}$ ($|\cos\theta| < 0.98$, $\epsilon = 95\%$); $\bar{c}c$ ($\epsilon = 35\%$); $\bar{b}b$ ($\epsilon = 60\%$)

radiative corrections included;

$$\delta P^{\pm}/P^{\pm} = 0.2\%$$
, $\delta \mathcal{L}_{\rm int}/\mathcal{L}_{\rm int} = 0.5\%$.

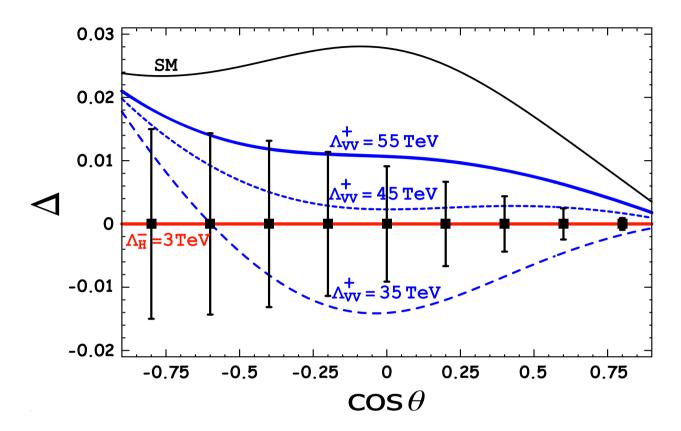
95% C.L. discovery reaches (in TeV). Left and right entries refer to the polarization configurations ($|P^-|, |P^+|$)=(0,0) and (0.8,0.6), respectively. $\sqrt{s} = 0.5$ TeV, $\mathcal{L}_{\rm int} = 100fb^{-1}$

	Process				
Model	$e^+e^- \to e^+e^-$	$e^+e^- \rightarrow l^+l^-$	$e^+e^- o \bar{b}b$	$e^+e^- \to \bar{c}c$	
Λ_H	4.1; 4.3	3.0; 3.2	3.0; 3.4	3.0; 3.2	
Λ_{VV}^{ef}	76.2; 86.4	89.7; 99.4	76.1; 96.4	84.0; 94.1	
Λ_{AA}^{ef}	47.4; 69.1	80.1; 88.9	76.7; 98.2	76.5; 85.9	
Λ_{LL}^{ef}	37.3; 52.5	53.4; 68.3	63.6; 72.7	54.5; 66.1	
Λ_{RR}^{ef}	36.0; 52.2	51.3; 68.3	42.5; 71.2	46.3; 66.8	
Λ^{ef}_{LR}	59.3; 69.1	48.5; 62.8	51.3; 68.7	37.0; 57.7	
Λ_{RL}^{ef}	$\Lambda_{RL}^{ee} = \Lambda_{LR}^{ee}$	48.7; 63.6	46.8; 60.1	52.2; 60.7	
M_C	12.0; 13.8	20.0; 22.2	6.6; 10.7	10.4; 12.0	

See also S.Riemann, T.Rizzo, S.Godfrey.

95% C.L. discovery reaches (in TeV). Left and right entries refer to the polarization configurations ($|P^-|, |P^+|$)=(0,0) and (0.8,0.6), respectively. $\sqrt{s} = 1.0$ TeV, $\mathcal{L}_{\rm int} = 1000fb^{-1}$

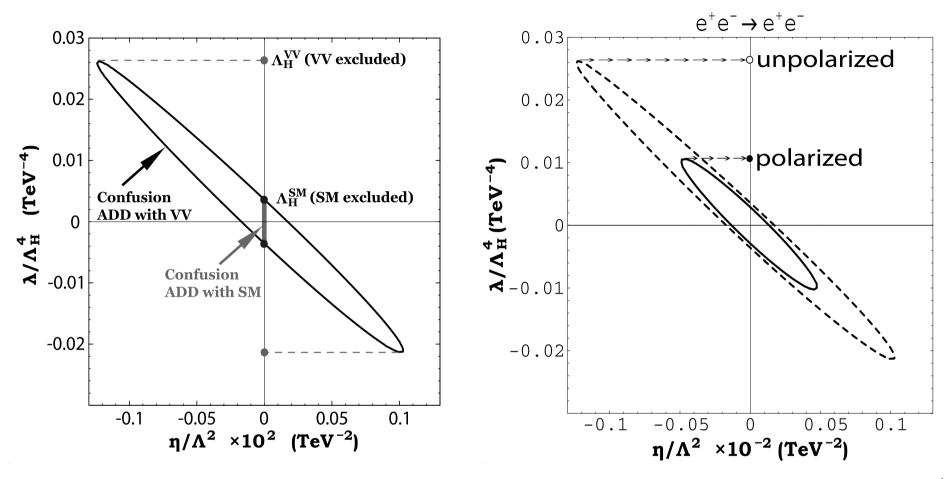
	Process				
Model	$e^+e^- \to e^+e^-$	$e^+e^- \to l^+l^-$	$e^+e^- o \bar{b}b$	$e^+e^- \to \bar c c$	
Λ_H	8.7; 9.4	6.7; 7.0	6.7; 7.5	6.7; 7.1	
Λ_{VV}^{ef}	173.6; 205.1	218.8; 244.3	185.6; 238.2	206.2; 232.3	
Λ_{AA}^{ef}	109.9; 166.1	194.7; 217.9	186.; 242.7	186.4; 210.8	
Λ_{LL}^{ef}	83.7; 122.8	128.3; 165.5	154.5; 175.8	131.3; 159.6	
Λ_{RR}^{ef}	80.5; 122.1	123.4; 166.1	103.5; 176.9	111.8; 164.1	
Λ_{LR}^{ef}	136.6; 166.8	120.5; 156.6	124.9; 170.2	92.7; 144.6	
Λ_{RL}^{ef}	$\Lambda_{RL}^{ee} = \Lambda_{LR}^{ee}$	120.8; 158.3	120.1; 151.9	129.6; 151.1	
M_C	27.2; 32.5	48.3; 54.2	15.6; 26.5	26.2; 30.2	


Distinction among the New Physics models

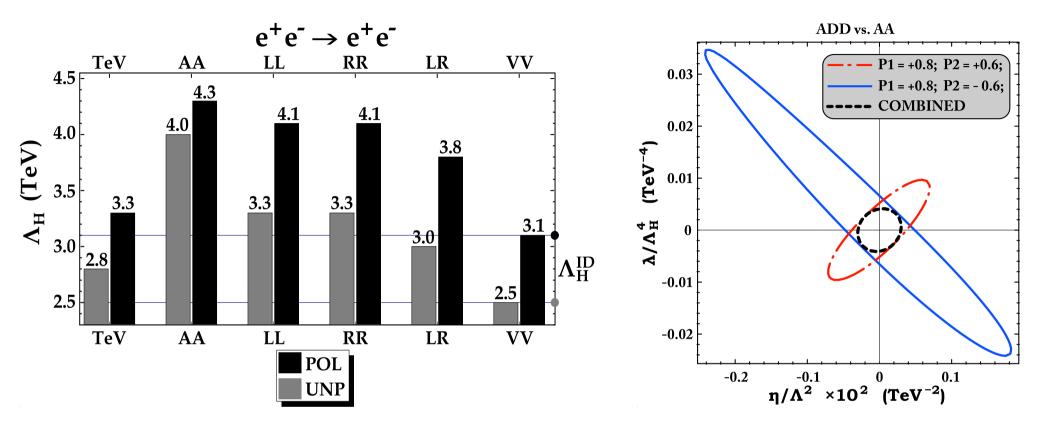
- expected identification reaches
- Assumption: One of the models, say the ADD, is found consistent with experimental data with some value of Λ_H
- Deviations of observables from the ADD model prediction due to other models (say, the CI ones):

$$\tilde{\Delta}(\mathcal{O}) = \frac{\mathcal{O}(CI) - \mathcal{O}(ADD)}{\mathcal{O}(ADD)}$$

assess the level at which ADD is distinguishable from the other models


Example: CI=VV (ADD vs. VV)

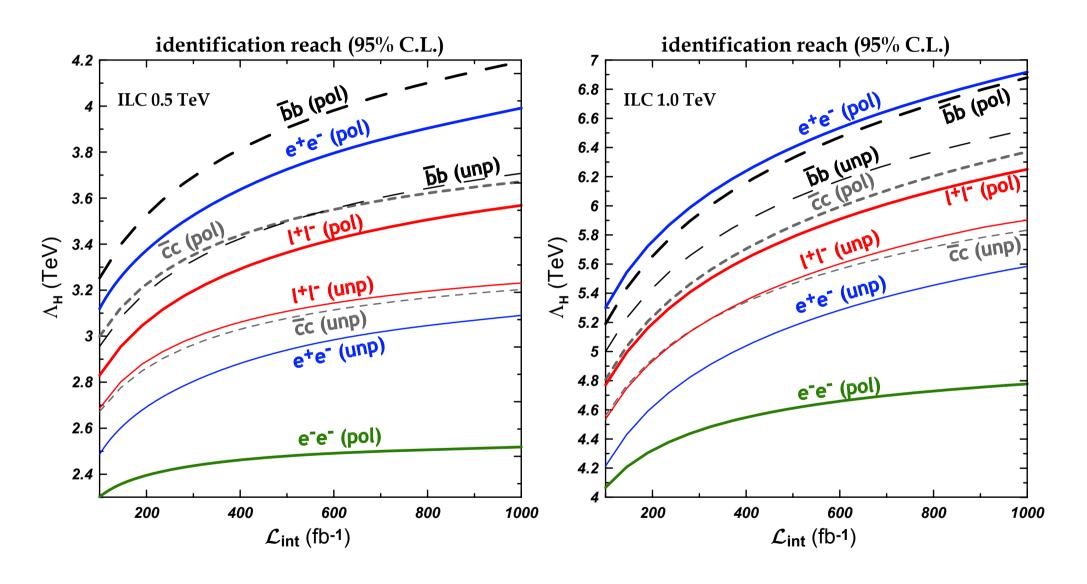
Region of confusion of ADD with VV model determined by:


$$\tilde{\chi}^2(\mathcal{O}) = \sum_{\{P^-, P^+\} \text{ bins}} \left(\frac{\tilde{\Delta}(\mathcal{O})^{\text{bin}}}{\tilde{\delta}\mathcal{O}^{\text{bin}}}\right)^2 \le 3.84 \quad (95\% \text{ C.L.})$$

$$\mathcal{L}_{e^{+}e^{-}} = 100 \; \text{fb}^{-1}, \, \sqrt{s} = 0.5 \; \text{TeV}.$$

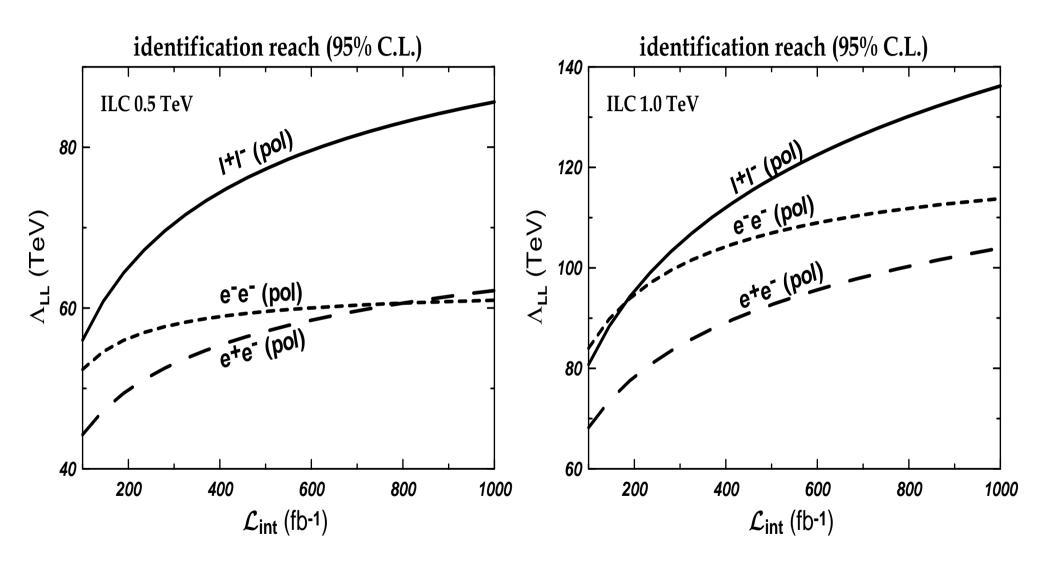
One can find a maximal absolute value of the scale parameter λ/Λ_H^4 for which the VV model hypothesis is expected to be excluded at the 95% C.L. for any value of the CI parameter η/Λ_{VV} . We call this Λ_H^{VV} as exclusion reach of the VV model.

ID reach for ADD model

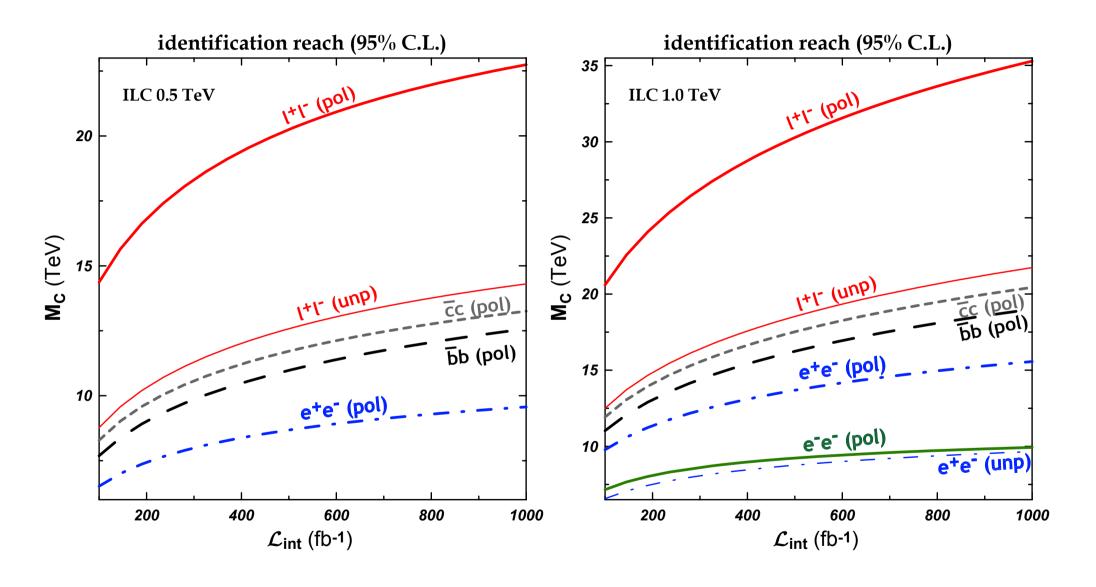


Exclusion reach: $\Lambda_H^{\rm VV}$, ...

Identification reach:


$$\begin{split} &\Lambda_H^{\rm ID} = min\{\Lambda_H^{\rm VV},\,\Lambda_H^{\rm AA},\Lambda_H^{\rm RR},\,\Lambda_H^{\rm LL},\,\Lambda_H^{\rm LR},\,\Lambda_H^{\rm TeV}\}\\ &\to \Lambda_H^{\rm ID} = 2.5(3.1) \text{ TeV}. \end{split}$$

ID reach for ADD model


Current limit: $\Lambda_H > 1.3 \text{ TeV}$

ID reach for CI models

Current limit: $\Lambda_{LL} > 15 \text{ TeV}$

ID reach for TeV^{-1} model

Current limit: $M_C > 6.8$ TeV

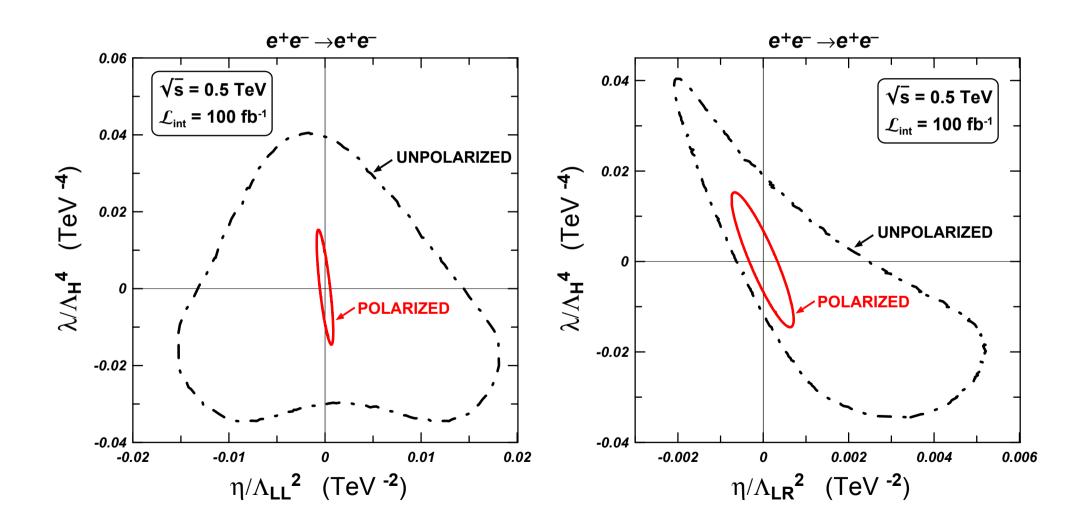
Model-independent CI considerations

General case: for given f CI interaction could be any linear combination of individual models $[\Lambda_{LL}, \Lambda_{RR}, \Lambda_{RL}, \Lambda_{LR}]$

All $\Lambda_{\alpha\beta}$ and Λ_H simultaneously in deviation

$$\tilde{\Delta}(\mathcal{O}) = \frac{\mathcal{O}(\Lambda_{LL}, \Lambda_{RR}, \Lambda_{RL}, \Lambda_{LR}) - \mathcal{O}(\Lambda_H)}{\mathcal{O}(\Lambda_H)}; \quad \tilde{\chi}^2(\mathcal{O}) = \sum_{\{P^-, P^+\} \text{ bins}} \left(\frac{\tilde{\Delta}(\mathcal{O})^{\text{bin}}}{\tilde{\delta}\mathcal{O}^{\text{bin}}}\right)^2.$$

Confusion region in multi-parameter space:


$$\tilde{\chi}^2 \leq \tilde{\chi}_{\rm CL}^2$$

Here, for 95% C.L.:

Bhabha scattering: $\tilde{\chi}_{\rm CL}^2 = 7.82$

Annihilation $\bar{f}f$ channels $(f = \mu, \tau, c, b)$: $\tilde{\chi}_{CL}^2 = 9.49$

Two-dimensional projection of the 95% C.L. confusion region onto the planes $(\eta_{\rm LL}/\Lambda_{\rm LL}^2,~\lambda/\Lambda_H^4)$ (left panel) and $(\eta_{\rm LR}/\Lambda_{\rm LR}^2$, $\lambda/\Lambda_H^4)$ (right panel) obtained from Bhabha scattering with unpolarized beams (dot-dashed curve) and with both beams polarized (solid curve).

Model-independent ID reach for ADD model

95% CL identification reach on ADD model parameter Λ_H obtained from $e^+e^- \to \bar{f}f$ at two configurations of polarizations: $(|P^+|,|P^-|)=(0,0)$ and $(0.8,\ 0.6)$ respectively.

$\Lambda_H^{ ext{ID}}$ (TeV)	$e^+e^- \rightarrow e^+e^-$	Proces $e^+e^- \rightarrow l^+l^-$	_	$e^+e^- \rightarrow \bar{b}b$
$\sqrt{s}=0.5$ TeV, $\mathcal{L}_{\mathrm{int}}=10^2fb^{-1}$	2.2; 2.9	2.3; 2.3	2.3; 2.4	2.6; 2.9
$\sqrt{s}=1.0$ TeV, $\mathcal{L}_{ m int}=10^3fb^{-1}$	5.0; 6.4	4.9; 5.1	5.1; 5 .3	5.8; 6.2

Conclusions

- If New Physics effects are discovered, it is crucial to have good search strategies to determine its origin.
- We have considered the problem of how to distinguish the potential New Physics scenarios from each other at the ILC by using polarized differential distribution for fermion pair production processes.
- Identification reach (95% CL) depending on the ILC energy and luminosity:

- ADD:

```
\Lambda_H = 3.1 - 6.9 TeV (model dependent cosideration)
```

$$\Lambda_H = 2.9 - 6.4$$
 TeV (model independent cosideration)

- TeV⁻¹: $M_C = 15 35$ TeV
- VV: $\Lambda_{VV} = 62 160 \text{ TeV}$
- AA: $\Lambda_{AA} = 70 170 \text{ TeV}$
- LL: $\Lambda_{LL} = 55 135 \text{ TeV}$
- RR, LR and RL: $\Lambda = 57 142$ TeV
- Polarization is quite important, in particular in case of CI models.