Performance of Extraction Line Energy Spectrometers and Polarimeters at 500 GeV and 1 TeV Center-of-Mass Collision Energy

Ken Moffeit BDIR Session

International Linear Collider (ILC) Workshop (ILC-ECFA and GDE Joint Meeting) Valencia, 6-10 November 2006

Ken Moffeit, Takashi Maruyama, Yuri Nosochkov, Andrei Seryi and Mike Woods SLAC

> William P. Oliver Tufts University

Eric Torrence University of Oregon

6-10 November 2006

Ken Moffeit, ILC GDE Valencia

1

14 mrad Extraction Line

Energy Chicane

Polarimeter Chicane

6-10 November 2006

The extraction line transport is simulated using the program GEANT

Disrupted beam events were taken from files prepared by Andrei Seryi.

Name	File	σ _x (nm)	σ _y (nm)	σ _z (nm)	E (Mean) (GeV)	E (RMS) (GeV)
Normal ILC	cs21	554	3.5	300	475.5	40.72
Large-y	cs23	367	7	600	463.0	47.54
Large-y dy=4nm	cs23_dy4				461.5	48.23
Large-y dx=200nm	cs23_dx20 0				464.4	46.38
Low Power	cs24	350	2.7	200	439.6	73.94

6-10 November 2006

0.5 TeV CMS

1 TeV CMS

0.5 TeV CMS Normal ILC Beam

1 TeV CMS

Compton IP

6-10 November 2006

Beam within +-100 microns of the peak

0.5 TeV CMS

Compton IP

Compton IP 1TeV CMS

14 mrad

Dispersion = -2 cm

Dispersion = -1 cm

6-10 November 2006

Ken Moffeit, ILC GDE Valencia

2mrad

$$P = \cos\left(\theta_{spin}\right) = \cos\left(\gamma \frac{g-2}{2} \cdot \theta_{bend}\right) = \cos\left(\frac{E(GeV)}{0.44065} \cdot \theta_{bend}\right)$$

50 μrad bend gives 56.7 mrad change in spin direction and P= 99.84% at 500GeV 0.5 TeV CMS

Beam accepted within +-100 microns about the peak and polarization projection

	0.5 TeV	CMS	14 mrad e	extraction line 1 Te	V CMS		
Condition (file name)	%Beam within +- 100microns in x & y	Luminosity Weighted Polarization at the IR	Polarization Projection	Condition (file name)	%Beam within +-100microns	Luminosity Weighted	Polarization Projection
Nominal Beam Condition (cs11)	47.8	99.84 %	99.86 %		in x & y	Polarization	at the
Large y (cs13)	34.7	99.68 %	99.74%			at the IR	Compton
Large y horizontal offset	30.3	99.08 %	99.73%	Marcial David Carl Vian (+ 20)	42.4.8/	00.00.4/	IP 00.01.4/
200nm				Nominal Beam Condition (cs21)	43.4 %	99.80 %	99.81 %
(cs13_dx200)				Large y (cs23)	23.2 %	99.43 %	99.55%
Large y vertical	32.0	99.72 %	99.74 %	Large y horizontal offset 200nm	24.1 %	99.33 %	99.54%
offset 4nm				(cs23_dx200)			
Low Power	28.4	00.67 %	00 60 %	Large y vertical offset 4nm (cs23_dy4)	20.7 %	99.43 %	99.55 %
(cs14)	20.4	22.0770	JJ.03 70	Low Power (cs24)	22.7 %	99.50 %	99.55 %

2 mrad extraction line

Condition (file name)	%Beam within +- 100microns in x & v	Luminosity Weighted Polarization at the IR	Polarization Projection	Condition (file name)	%Beam within +-100microns in	Luminosity Weighted	Polarization Projection
Nominal Beam Condition (cs11)	14.5	99.84%	99.82		x & y	Polarization at the IR	at the Compton IP
Large y (cs13)	6.9	99.68 % 99.68 %	99.83 00.81	Nominal Beam Condition (cs21) abs(x-138.035)<0.01cm	18.9 %	99.80 %	99.81 %
horizontal offset	0.2	77.00 70	<i>77.</i> 01	Large y (cs23) abs(x-138.041)<0.01cm	7.3 %	99.43 %	99.62 %
(cs13_dx200)				Large y horizontal offset 200nm (cs23 dx200)	9.8 %	99.33 %	99.20 %
Large y vertical	5.6	99.72 %	99.82	abs(x-138.041)<0.01cm			
offset 4nm (cs13_dy4)				Large y vertical offset 4nm (cs23_dy4) abs(x-138.040)<0.01cm	7.8 %	99.43 %	99.27 %
Low Power (cs14)	5.0	99.67 %	99.81	Low Power (cs24) abs(x-138.039)≤0.01cm	7.3 %	99.50 %	99.68 %

Polarization at Compton IP within 0.21% of the Luminosity weighted Polarization

6-10 November 2006

Polarization at Compton IP within 0.21% of the Luminosity weighted Polarization

Beam Losses

0.5 TeV CMS

from the e+e- IR to the Compton Detector Plane

14 mrad Crossing Angle Extraction Line

Condition (file name)	Losses	# Beam	Lost Beam
Normal ILC Beam Condition (cs11) cs11 tail1 < 0.65E0 or angle > 500mrad	0 0	34883 1.8*10 ⁶	<0.5*10 ⁻⁴ <10 ⁻⁷
Large y (cs13)	0	34907	<0.5*10-4
Large y horizontal offset 200nm (cs13_dx200)	0	34898	< 0.5*10-4
Large y vertical offset 4nm (cs13_dy4)	0	34923	< 0.5*10-4
Low Power (cs14)	4	34913	1.1*10 ⁻⁴

2 mrad Crossing Angle Extraction Line

Condition (file name)	Losses	# Beam	Lost Beam
Nominal Beam Condition (cs11) cs11 tail1 < 0.65E0 or angle > 500mrad	5 4604	34883 1.8*10 ⁶	1.4*10 ⁻⁴ 2.6*10 ⁻⁴
Large y (cs13)	32	34907	9.2*10 ⁻⁴
Large y horizontal offset 200nm (cs13_dx200)	32	34898	9.2*10-4
Large y vertical offset 4nm (cs13_dy4)	29	34923	8.3*10-4
Low Power (cs14)	437	34913	1.25%

6-10 November 2006

Beam Losses

1 TeV CMS

from the e+e- IR to the Compton Detector Plane

14 mrad Crossing Angle Extraction Line

Condition (file name)		Beam	Lost Beam
Nominal Beam Condition (cs21)	0	29921	<0.6 * 10-4
cs21 tail1 < 0.65E0 or angle > 500mrad	57	3.2* 106	1.8 * 10 ⁻⁵
Large y (cs23)	3	29916	1.0 * 10-4
Large y horizontal offset 200nm (cs23_dx200)	2	29918	0.7 * 10 ⁻⁴
Large y vertical offset 4nm (cs23_dy4)	3	29928	1.0 * 10-4
Low Power (cs24)	186	34905	0.53 %

2 mrad Crossing Angle Extraction Line

Condition (file name)	Losses	Beam	Lost Beam
Nominal Beam Condition (cs21) cs21 tail1 < 0.65E0 or angle > 500mrad	261 28,263	34907 3.9* 10 ⁶	0.75 % 0.72 %
Large y (cs23)	494	34901	1.42 %
Large y horizontal offset 200nm (cs23_dx200)	355	34904	1.02 %
Large y vertical offset 4nm (cs23_dy4)	507	34915	1.45 %
Low Power (cs24)	2545	34905	7.29 %
0 November 2006 Ken Moffeit, ILC GE	E Valenci	a	

Beam Loss Background at Cherenkov Detector

14 mrad extraction line loss of 1.8*10-5 of the 3.2 million original beam tracks

2 mrad extraction line loss of 0.72% of the 3.92 million original beam tracks

Compton Detector Plane 1 TeV CMS

6-10 November 2006

Synchrotron Radiation

1 TEV CMS

290 meters 200 meters

Synchrotron Radiation

Energy Loss from Synchrotron Radiation between the e+e- IR and the Center of the Energy Chicane

0.5 TeV CMS

6-10 November 2006

14 mrad Crossing Angle Extraction Line 0.5 TeV CMS

Condition (file name)	Energy Loss (MeV)	Energy Loss (MeV) for E>240GeV
Nominal Beam Condition (cs11)	117	120
Large y (cs13)	121	125
Large y horizontal offset 200nm cs13dx200	121	124
Large y vertical offset 4nm cs13dy4	121	125
Low Power (cs14)	117	126

2 mrad Crossing Angle Extraction Line 0.5 TeV CMS

Condition (file name)	Energy Loss (MeV)	Energy Loss (MeV) for E>240GeV
Nominal Beam Condition (cs11)	829	851
Large y (cs13)	831	852
Large y horizontal offset 200nm (cs13_dx200)	806	827
Large y vertical offset 4nm (cs13_dy4)	832	854
Low Power (cs21)	802	862

Synchrotron Radiation

Energy Loss from Synchrotron Radiation between the e+e- IR and the Center of the Energy Chicane

14 mrad Crossing Angle Extraction Line 1 TeV CMS

Condition (file name)	Energy Loss (GeV)	Energy Loss (GeV) for E>480 GeV
Nominal Beam Condition (cs21)	1.70	1.83
Large y (cs23)	1.71	1.86
Large y horizontal offset 200nm (cs23_dx200)	1.72	1.87
Large y vertical offset 4nm cs23dy4	1.70	1.85
Low Power (cs24)	1.56	1.87

2 mrad Crossing Angle Extraction Line 1 TeV CMS

Condition (file name)	Energy Loss (GeV)	Energy Loss (GeV) for E>480 GeV
Nominal Beam Condition (cs21)	12.37	13.13
Large y (cs23)	12.16	13.08
Large y horizontal offset 200nm (cs23_dx200)	11.75	12.71
Large y vertical offset 4nm cs23dy4	12.04	12.99
Low Power (cs24)	11.62	13.16
en Moffeit, ILC GDE Valencia		17

0.1*10⁶ /cm² photons >15MeV per 2*10¹⁰ electrons

1.6*10⁶/cm² photons >15MeV per 2*10¹⁰ electrons

Scattered synchrotron radiation photons give background in the region of the Cherenkov detector

6-10 November 2006

X (cm) Ken Motteit, ILC GDE Valencia

Conclusions

14 mrad extraction line

0.5 TeV CMS

•Performance of Energy Spectrometer and Polarimeter Meets Goals

1 TeV CMS

•Performance of Energy Spectrometer and Polarimeter Meets Goals

•Large background from scattered synchrotron radiation photons at the Cherenkov Detector

•Concern about large beam losses for Low Power beam parameters

2 mrad extraction line

0.5 TeV CMS
Performance of Energy Spectrometer and Polarimeter Meets Goals
Large background from scattered synchrotron radiation photons at the Cherenkov Detector
Concern about large beam losses for Low Power beam parameters
1 TeV CMS
Performance of Polarimeter Meets Goals for Normal ILC Beam Parameters
Performance of Energy Spectrometer does not meet goals
Large background from scattered synchrotron radiation photons at the Cherenkov Detector

•Extreme concern about very large beam losses

Conclusions

14 mrad extraction line

0.5 TeV CMS

•Core of beam within +-100microns has 48% of the beam.

•The polarization projection at the Compton IP is in good agreement with the luminosity weighted polarization at the e+e- interaction region. A precision measurement of +-0.25% will be possible.

•No beam losses from e+e- IR to Compton detector plane out of 17.6 million beam tracks for Normal ILC and Large-y beam parameter data sets. The Low Power beam parameter data set has losses of 1.1 * 10⁻⁴.

•Beam energy loss due to synchrotron radiation to the middle of energy chicane (z=59.7 m) is ~120 MeV and shows small variations of less than 10 MeV with different beam parameter conditions for the disrupted beam.

•The collimator at z=164.25 meters needs to be designed. It absorbs the synchrotron radiation above the 0.75 mrad beam stay clear allowing the Cherenkov detector to begin at y~14 cm. Background from scattered synchrotron radiation occurs at the Cherenkov detector and will require careful design of the collimation and shielding.

•Performance of Energy Spectrometer and Polarimeter Meets Goals

6-10 November 2006

14 mrad extraction line

1 TeV CMS

•Core of beam within +-100microns has 43% of the beam. The large-y and low power parameter data sets have a lower Compton luminosity by a factor 2.

•The polarization projection at the Compton IP is in good agreement with the luminosity weighted polarization at the e+e- interaction region. A precision measurement of +-0.25% will be possible.

•Beam losses of 1.8*10⁻⁵ occur between the e+e- IR and the Compton detector plane for the Normal ILC beam parameter data set. Beam losses are also small but not negligible for the Large-y beam parameter data set. There are large losses of 0.53% of the beam for the Low Power beam parameter data set that will require insertion of a new collimator between the e+e- IR and the Compton detector plane or an increase in the beam stay clear from 0.75 mrad.

•Both the Normal ILC and Large-y beam parameter data sets have beam energy losses of ~1.70 GeV due to synchrotron radiation in the magnets between the e+e- IR and the middle of energy chicane with variations less than 20 MeV. The Low Power beam parameter data set has beam energy loss due to synchrotron radiation of 1.56 GeV or 140 MeV less than the other data sets. This is due to the larger beamstrahlung energy tail having smaller synchrotron radiation losses. Measuring the high energy part of the beam energy spectrum will allow the energy loss due to synchrotron radiation to be understood to the precision required.

•The collimator at z=164.25 meters absorbs the synchrotron radiation above the 0.75 mrad beam stay clear allowing the Cherenkov detector to begin at y~14 cm. Background from scattered synchrotron radiation is very large at the Cherenkov detector and will require careful design of the collimation and shielding (<2*10⁴ /cm² photons >15MeV per 2*10¹⁰ electrons).

•Performance of Energy Spectrometer and Polarimeter Meets Goals

Large background from scattered synchrotron radiation photons at the Cherenkov Detector
Concern about large beam losses for Low Power beam parameters

2 mrad extraction line

0.5 TeV CMS

•There are large beam losses between e+e- IR and Compton detector plane (>2.6*10⁻⁴ are lost) giving secondary backgrounds of mainly photons in the region of the Cherenkov Detector. The Low Power beam parameter data set has beam losses ~ 1.25% giving very large backgrounds at the Cherenkov detector.

•A small percentage of beam is hit by laser spot +-100 microns (~15%) at the Compton IP and results in low Compton luminosity.

•The polarization projection at the Compton IP is in good agreement with the luminosity weighted polarization at the e+e- interaction region. A precision measurement of +-0.25% will be possible.

•There are large beam energy losses (~850 MeV) due to synchrotron radiation between IR and the center of the energy chicane at z=198.82 meters. Beam collision jitter in the horizontal plane of 200 nanometers gives changes in the beam energy loss due to synchrotron radiation of ~25 MeV comparable to the goal of the precision measurement of the energy.

•Synchrotron radiation at Cherenkov Detector is favorable. The detector only sees the synchrotron radiation from the magnets of the polarimeter chicane, and this is contained between -9 and +2 cm. The first cell of the Cherenkov Detector starts at +10 cm. Background from scattered synchrotron radiation occurs at the Cherenkov detector and will require careful design of the collimation and shielding (0.1*10⁶ /cm² photons >15MeV per 2*10¹⁰ electrons).

Performance of Energy Spectrometer and Polarimeter Meets Goals
Large background from scattered synchrotron radiation photons at the Cherenkov Detector
Concern about large beam losses for Low Power beam parameters

2 mrad extraction line

1 TeV CMS

•There are large beam losses between the e+e- IR and the Compton detector plane (0.74% of the beam is lost for the Normal ILC beam parameter data set) giving secondary backgrounds of mainly low energy photons with energy <10 MeV. For the Low Power beam parameter data set 7.3% of the beam is lost giving large backgrounds at the Cherenkov detector.

•At the Compton IP only 18.9% of the beam with Normal ILC beam parameters is contained within +-100microns of the peak giving a lower luminosity for Compton scattering of the laser light on the disrupted electron beam.

•The polarization measurement at the Compton IP is within the desired precision of +- 0.25% of the estimated luminosity weighted polarization.

•There are large beam energy losses (12.4 GeV) due to synchrotron radiation between IR and the center of the energy chicane at z=198.82 meters. Beam collision jitter in the horizontal plane of 200 nanometers gives large variations in the beam energy loss due to synchrotron radiation of ~450 MeV. The collision offset data from instruments near the e+e- interaction region can be used to reduce the uncertainty in the synchrotron radiation loss due to horizontal jitter.

•Synchrotron radiation at Cherenkov Detector is favorable, but, scattered synchrotron radiation photons give large background in the region of the Cherenkov detector $(1.6*10^6 / \text{cm}^2 \text{ photons} > 15 \text{MeV per } 2*10^{10} \text{ electrons})$.

Performance of Polarimeter Meets Goals for Normal ILC Beam Parameters
Performance of Energy Spectrometer does not meet goals
Large background from scattered synchrotron radiation photons at the Cherenkov Detector
Extreme concern about very large beam losses