Performance of Extraction Line Energy Spectrometers and Polarimeters at 500 GeV and 1 TeV Center-of-Mass Collision Energy

Ken Moffeit BDIR Session International Linear Collider (ILC) Workshop
(ILC-ECFA and GDE Joint Meeting)
Valencia, 6-10 November 2006

Ken Moffeit, Takashi Maruyama, Yuri Nosochkov, Andrei Seryi and Mike Woods SLAC

William P. Oliver
Tufts University
Eric Torrence
University of Oregon

14 mrad Extraction Line

Energy Chicane
Polarimeter Chicane

2 mrad Extraction Line

2 mrad extraction line
$10 \mathrm{~cm} \frac{{ }_{10 \mathrm{~m}}}{}$

The extraction line transport is simulated using the program GEANT

1 TeV CMS

0.5 TeV CMS
$\mathrm{e}+\mathrm{e}-$ Interaction Region

1 TeV CMS

e+e- Interaction Region 1 TeV CMS

0.5 TeV CMS
 Normal ILC Beam

Compton IP

Beam within +-100 microns of the peak

$$
P=\cos \left(\theta_{\text {spin }}\right)=\cos \left(\gamma \frac{g-2}{2} \cdot \theta_{\text {bend }}\right)=\cos \left(\frac{E(G e V)}{0.44065} \cdot \theta_{\text {bend }}\right)
$$

$50 \mu \mathrm{rad}$ bend gives 56.7 mrad change in spin direction and $\mathrm{P}=99.84 \%$ at 500 GeV

0.5 TeV CMS

14 mrad

1 TeV CMS
14 mrad
Compton $1 P z=147.682 \mathrm{~m}$
$-1.019<Y<-0.999 \mathrm{~cm}$
$-1.019<Y<-0.999 \mathrm{~cm}$
$a b s(X)<0.01 \mathrm{~cm}$

2mrad
Compton IP $z=269.07 \mathrm{~m}$ Compton abs $(x-138.035)<0.01 \mathrm{~cm}$

$$
P_{\text {Lu min osityWeighted }}=\operatorname{Cos}\left(\theta_{\text {SpinLu min osityWeighted }}\right)=\operatorname{Cos}\left(\frac{E(G e V)}{0.44065} \cdot \frac{1}{2} \theta_{x-\text { angle }}^{I R}\right)
$$

$$
P_{\text {Lu minosityWeighted }}=99.84 \%
$$

$$
P_{\text {Lu min osityWeighted }}=99.80 \%
$$

Beam accepted within +-100 microns about the peak and polarization projection

$$
\text { 0.5 TeV CMS } \quad 14 \text { mrad extraction line } \quad 1 \mathrm{TeV} \text { CMS }
$$

Condition (file name)	Y/Beam within+- 100microns in x\&y	Luminosity Weighted Polarization at the IR	Polarization Projection
Nominal Beam Condition(cs11)	47.8	99.84%	99.86%
Large y(cs13)	34.7	99.68%	99.74%
Large y honzontal offset 200nmm (cs13_dx200)	35.3	99.68%	99.73%
Large y vertical ofsset 4rm (cs13_dy4)	32.0	99.72%	99.74%
Low Power (cs14)	28.4	99.67%	99.69%

Condition (file name)	yBeam within +.100muicrons in $x \& y$	Luminosity Weighted Polarization at the \mathbb{R}	Polarization Projection at the Compton IP
Nonimal BeamCondition(cs21)	43.4\%	99.80\%	99.81\%
Large y (cs23)	23.2\%	99.43\%	99.55\%
Large y horizortal offiset 200rmin (cs23_dr200)	24.1\%	99.33\%	99.54\%
Large y vertical offset 4ann (cs3 dy ${ }^{\text {d }}$	20.7\%	99.43\%	99.55\%
Low Power (cs24)	22.7\%	99.50\%	99.55\%

2 mrad extraction line

Condition (file name)	\%Beam within +- 100microns in x \& y	Luminosity Weighted Polarization at the IR	Polarization Projection
Nominal Beam Condition(cs11)	14.5	99.84%	99.82
Large y (cs13)	6.9	99.68%	99.83
Large y honzontal offset 200 (cs13_dx200)	8.2	99.68%	99.81
Large y vertical ofset 4num (cs13_dy4)	5.6	99.72%	99.82
Low Power (cs14)	5.0	99.67%	99.81

Condition (file name)	\%Beam within +100 microns in $x \& y$	Luminosity Weighted Polarization at the IN:	Polarization Projection at the Compton IP
$\begin{aligned} & \text { Nominal Beam Condition (cs21) } \\ & \text { abs }(x-138.035)<0.01 \mathrm{~cm} \end{aligned}$	189\%	99.80\%	9981\%
$\begin{gathered} \text { Large y }(\operatorname{cs23}) \\ \text { abs }(\mathbf{x}-138.041) \subset 0.01 \mathrm{~cm} \end{gathered}$	7.3\%	99.43\%	99.62\%
$\begin{aligned} & \text { Large y honzortal offset 200 } \mathrm{nm} \\ & (\mathrm{cs} 23 \mathrm{dv} 200) \\ & \operatorname{abs}(\mathbf{x}-138 . \overline{041})=0.01 \mathrm{~cm} \end{aligned}$	98\%	99.33\%	99.20\%
$\begin{gathered} \text { Large y vertical offset } 4 \mathrm{nmm}\left(c s \mathcal{S B}_{-} \text {dy } 4\right) \\ \text { abs }(x-138.040)<0.01 \mathrm{~cm} \end{gathered}$	78\%	99.43\%	99.27%
$\begin{aligned} & \text { Low Power (cs24) } \\ & \text { abs }(\mathbf{x}-138.039)<0.01 \mathrm{~cm} \end{aligned}$	7.3\%	99.50\%	99.68\%

Polarization at Compton IP within 0.21% of the Luminosity weighted Polarization
6-10 November 2006
Ken Moffeit, ILC GDE Valencia

Polarization at Compton IP within 0.21% of the Luminosity weighted Polarization

Beam Losses

from the e+e- IR to the Compton Detector Plane

0.5 TeV CMS

14 mrad Crossing Angle Extraction Line

Condition (file name)	Losses	\# Beam	Lost Beam
Normal ILC Beam Condition (cs11)	0	34883	$<0.5^{*} 10^{-4}$
cs11 tail1 < 0.65E0 or angle > 500mrad	0	$1.8^{*} 10^{6}$	$<10^{-7}$
Large y (cs13)	0	34907	$<0.5^{*} 10^{-4}$
Large y horizontal offset 200nm (cs13_dx200)	0	34898	$<0.5^{*} 10^{-4}$
Large y vertical offset 4nm (cs13_dy4)	0	34923	$<0.5^{*} 10^{-4}$
Low Power (cs14)	4	34913	$1.1^{*} 10^{-4}$

2 mrad Crossing Angle Extraction Line

Condition (file name)	Losses	\# Beam	Lost Beam
Nominal Beam Condition (cs11)	5	34883	$1.4^{*} 10^{-4}$
cs11 tail1 < 0.65E0 or angle > 500mrad	4604	$1.8^{*} 10^{6}$	$2.6^{*} 10^{-4}$
Large y (cs13)	32	34907	$9.2^{* 10^{-4}}$
Large y horizontal offset 200nm (cs13_dx200)	32	34898	$9.2^{*} 10^{-4}$
Large y vertical offset 4nm (cs13_dy4)	29	34923	$8.3^{* 10^{-4}}$
Low Power (cs14)	437	34913	1.25%

Beam Losses

from the e+e- IR to the Compton Detector Plane
14 mrad Crossing Angle Extraction Line

Condition (file name)	Losses	Beam	Lost Beam
Nominal Beam Condition (cs21)	0	29921	$<0.6 * 10^{-4}$
cs21 tail1 < 0.65E0 or angle > 500mrad	57	$3.2^{*} 10^{6}$	$1.8 * 10^{-5}$
Large y (cs23)	3	29916	$1.0 * 10^{-4}$
Large y horizontal offset 200nm (cs23_dx200)	2	29918	$0.7 * 10^{-4}$
Large y vertical offset 4nm (cs23_dy4)	3	29928	$1.0 * 10^{-4}$
Low Power (cs24)	186	34905	0.53%

2 mrad Crossing Angle Extraction Line

Condition (file name)	Losses	Beam	Lost Beam
Nominal Beam Condition (cs21) cs21 tail1 < 0.65E0 or angle $>500 \mathrm{mrad}$	$\begin{gathered} 261 \\ 28,263 \end{gathered}$	$\begin{gathered} 34907 \\ 3.9 * 10^{6} \end{gathered}$	$\begin{aligned} & 0.75 \% \\ & 0.72 \% \end{aligned}$
Large y (cs23)	494	34901	1.42 \%
Large y horizontal offset 200nm (cs23_dx200)	355	34904	1.02 \%
Large y vertical offset 4nm (cs23_dy4)	507	34915	1.45 \%
Low Power (cs24)	2545	34905	7.29 \%

Beam Loss Background at Cherenkov Detector

14 mrad extraction line loss of $1.8 * 10-5$ of the 3.2 million original beam tracks

2 mrad extraction line loss of 0.72% of the 3.92
million original beam tracks

Compton Detector Plane 1 TeV CMS
$14 \operatorname{mrad} \mathrm{z}=175 \mathrm{~m}$

$2 \mathrm{mrad} \mathrm{z}=288.37 \mathrm{~m}$

Compton Signal ~ 650 backscattered electrons per GeV or >1000 per 1cm cell

Synchrotron Radiation

1 TEV CMS
14 mrad extraction line

2 mrad extraction line

Synchrotron Radiation

14 mrad Crossing Angle Extraction Line 0.5 TeV CMS

Energy Loss from Synchrotron Radiation between the e+e- IR and the Center of the Energy Chicane	Condition (file name)	Energy Loss (MeV)	Energy Loss (MeV) for E $>240 \mathrm{GeV}$
0.5 TeV CMS	Nominal Beam Condition (cs11)	117	120
$\begin{aligned} & \text { e+e- Interaction Point } \\ & z=0 \end{aligned}$	Large y (cs13)	121	125
	Large y horizontal offset 200nm cs13dx200	121	124
	Large y vertical offset 4nm cs13dy4	121	125
	Low Power (cs14)	117	126
	2 mrad Crossing Angle Extraction Line 0.5 TeV CMS		
	Condition (file name)	Energy Loss (MeV)	Energy Loss (MeV) for E $>240 \mathrm{GeV}$
	Nominal Beam Condition (cs11)	829	851
m	Large y (cs13)	831	852
	Large y horizontal offset 200nm (cs13_dx200)	806	827
	Large y vertical offset 4nm (cs13_dy4)	832	854
Energy (GeV)	Low Power (cs21)	802	862

Synchrotron Radiation

Energy Loss from Synchrotron Radiation between the e+e- IR and the Center of the Energy Chicane

Center of Energy Spectrometer

 6-10 November 2006

14 mrad Crossing Angle Extraction Line 1 TeV CMS

Condition (file name)	Energy Loss (GeV)	Energy Loss (GeV) for E>480 GeV
Nominal Beam Condition (cs21)	1.70	1.83
Large y (cs23)	1.71	1.86
Large y horizontal offset 200nm (cs23_dx200)	1.72	1.87
Large y vertical offset 4nm cs23dy4	1.70	1.85
Low Power (cs24)	1.56	1.87

2 mrad Crossing Angle Extraction Line 1 TeV CMS

Condition (file name)	Energy Loss (GeV)	Energy Loss (GeV) for E>480 GeV
Nominal Beam Condition (cs21)	12.37	13.13
Large y (cs23)	12.16	13.08
Large y horizontal offset 200nm (cs23_dx200)	11.75	12.71
Large y vertical offset 4nm cs23dy4	12.04	12.99
Low Power (cs24)	11.62	13.16

Ken Moffeit, ILC GDE Valencia 17

Compton IP

$<10^{4} / \mathrm{cm}^{2}$ photons
per $2^{\star} 10^{10}$ electrons
0.5 TeV CMS

Compton Detector Plane

$<2 \star 10^{4} / \mathrm{cm}^{2}$ photons
$>15 \mathrm{MeV}$ per $2^{*} 10^{10}$
electrons

$1.6^{*} 10^{6} / \mathrm{cm}^{2}$ photons $>15 \mathrm{MeV}$ per $2^{*} 10^{10}$ electrons

Scattered synchrotron radiation photons give background in the region of the Cherenkov detector

Conclusions

14 mrad extraction line

0.5 TeV CMS

-Performance of Energy Spectrometer and Polarimeter Meets Goals
1 TeV CMS
-Performance of Energy Spectrometer and Polarimeter Meets Goals
-Large background from scattered synchrotron radiation photons at the Cherenkov Detector
-Concern about large beam losses for Low Power beam parameters

2 mrad extraction line

0.5 TeV CMS
-Performance of Energy Spectrometer and Polarimeter Meets Goals
-Large background from scattered synchrotron radiation photons at the Cherenkov Detector
-Concern about large beam losses for Low Power beam parameters
1 TeV CMS
-Performance of Polarimeter Meets Goals for Normal ILC Beam Parameters
-Performance of Energy Spectrometer does not meet goals
-Large background from scattered synchrotron radiation photons at the Cherenkov Detector
-Extreme concern about very large beam losses

Conclusions
 14 mrad extraction line
 0.5 TeV CMS

-Core of beam within +-100microns has 48% of the beam.
-The polarization projection at the Compton IP is in good agreement with the luminosity weighted polarization at the $\mathrm{e}+\mathrm{e}$ - interaction region. A precision measurement of $+-0.25 \%$ will be possible.
-No beam losses from e+e- IR to Compton detector plane out of 17.6 million beam tracks for Normal ILC and Large-y beam parameter data sets. The Low Power beam parameter data set has losses of 1.1 * 10^{-4}.
-Beam energy loss due to synchrotron radiation to the middle of energy chicane ($z=59.7 \mathrm{~m}$) is ~ 120 MeV and shows small variations of less than 10 MeV with different beam parameter conditions for the disrupted beam.
-The collimator at $z=164.25$ meters needs to be designed. It absorbs the synchrotron radiation above the 0.75 mrad beam stay clear allowing the Cherenkov detector to begin at $y \sim 14 \mathrm{~cm}$. Background from scattered synchrotron radiation occurs at the Cherenkov detector and will require careful design of the collimation and shielding.
-Performance of Energy Spectrometer and Polarimeter Meets Goals

14 mrad extraction line

-Core of beam within +-100microns has 43% of the beam. The large-y and low power parameter data sets have a lower Compton luminosity by a factor 2.
-The polarization projection at the Compton IP is in good agreement with the luminosity weighted polarization at the e+e- interaction region. A precision measurement of $+-0.25 \%$ will be possible.
-Beam losses of $1.8^{* 10^{-5}}$ occur between the e+e- IR and the Compton detector plane for the Normal ILC beam parameter data set. Beam losses are also small but not negligible for the Large-y beam parameter data set. There are large losses of 0.53% of the beam for the Low Power beam parameter data set that will require insertion of a new collimator between the e+e- IR and the Compton detector plane or an increase in the beam stay clear from 0.75 mrad.
-Both the Normal ILC and Large-y beam parameter data sets have beam energy losses of $\sim 1.70 \mathrm{GeV}$ due to synchrotron radiation in the magnets between the e+e- IR and the middle of energy chicane with variations less than 20 MeV . The Low Power beam parameter data set has beam energy loss due to synchrotron radiation of 1.56 GeV or 140 MeV less than the other data sets. This is due to the larger beamstrahlung energy tail having smaller synchrotron radiation losses. Measuring the high energy part of the beam energy spectrum will allow the energy loss due to synchrotron radiation to be understood to the precision required.
-The collimator at $z=164.25$ meters absorbs the synchrotron radiation above the 0.75 mrad beam stay clear allowing the Cherenkov detector to begin at $y \sim 14 \mathrm{~cm}$. Background from scattered synchrotron radiation is very large at the Cherenkov detector and will require careful design of the collimation and shielding ($<2 * 10^{4} / \mathrm{cm}^{2}$ photons $>15 \mathrm{MeV}$ per $2^{*} 10^{10}$ electrons).
-Performance of Energy Spectrometer and Polarimeter Meets Goals
-Large background from scattered synchrotron radiation photons at the Cherenkov Detector -Concern about large beam losses for Low Power beam parameters

2 mrad extraction line

0.5 TeV CMS

-There are large beam losses between e+e- IR and Compton detector plane ($>2.6^{*} 10^{-4}$ are lost) giving secondary backgrounds of mainly photons in the region of the Cherenkov Detector. The Low Power beam parameter data set has beam losses $\sim 1.25 \%$ giving very large backgrounds at the Cherenkov detector.
-A small percentage of beam is hit by laser spot +-100 microns ($\sim 15 \%$) at the Compton IP and results in low Compton luminosity.
-The polarization projection at the Compton IP is in good agreement with the luminosity weighted polarization at the $\mathrm{e}+\mathrm{e}$ - interaction region. A precision measurement of $+-0.25 \%$ will be possible.
-There are large beam energy losses ($\sim 850 \mathrm{MeV}$) due to synchrotron radiation between IR and the center of the energy chicane at $z=198.82$ meters. Beam collision jitter in the horizontal plane of 200 nanometers gives changes in the beam energy loss due to synchrotron radiation of $\sim 25 \mathrm{MeV}$ comparable to the goal of the precision measurement of the energy.
-Synchrotron radiation at Cherenkov Detector is favorable. The detector only sees the synchrotron radiation from the magnets of the polarimeter chicane, and this is contained between -9 and +2 cm . The first cell of the Cherenkov Detector starts at +10 cm . Background from scattered synchrotron radiation occurs at the Cherenkov detector and will require careful design of the collimation and shielding ($0.1 * 10^{6} / \mathrm{cm}^{2}$ photons $>15 \mathrm{MeV}$ per $2^{*} 10^{10}$ electrons).

-Performance of Energy Spectrometer and Polarimeter Meets Goals
 -Large background from scattered synchrotron radiation photons at the Cherenkov Detector
 -Concern about large beam losses for Low Power beam parameters

2 mrad extraction line

1 TeV CMS

-There are large beam losses between the e+e- IR and the Compton detector plane (0.74% of the beam is lost for the Normal ILC beam parameter data set) giving secondary backgrounds of mainly low energy photons with energy $<10 \mathrm{MeV}$. For the Low Power beam parameter data set 7.3% of the beam is lost giving large backgrounds at the Cherenkov detector.
-At the Compton IP only 18.9% of the beam with Normal ILC beam parameters is contained within +-100 microns of the peak giving a lower luminosity for Compton scattering of the laser light on the disrupted electron beam.
-The polarization measurement at the Compton IP is within the desired precision of $+-0.25 \%$ of the estimated luminosity weighted polarization.
-There are large beam energy losses (12.4 GeV) due to synchrotron radiation between IR and the center of the energy chicane at $z=198.82$ meters. Beam collision jitter in the horizontal plane of 200 nanometers gives large variations in the beam energy loss due to synchrotron radiation of $\sim 450 \mathrm{MeV}$. The collision offset data from instruments near the e+e- interaction region can be used to reduce the uncertainty in the synchrotron radiation loss due to horizontal jitter.
-Synchrotron radiation at Cherenkov Detector is favorable, but, scattered synchrotron radiation photons give large background in the region of the Cherenkov detector ($1.6^{*} 10^{6} / \mathrm{cm}^{2}$ photons $>15 \mathrm{MeV}$ per $2^{\star 1} 10^{10}$ electrons).
-Performance of Polarimeter Meets Goals for Normal ILC Beam Parameters
-Performance of Energy Spectrometer does not meet goals
-Large background from scattered synchrotron radiation photons at the Cherenkov Detector
-Extreme concern about very large beam losses

