Calorimetry at ILC

M.C. Fouz, E. Cortina CIEMAT Why?

First Goal of ILC: Study of EW symmetry breaking

BUT

Why?

processes at ILC

Multi bosons	Multifermions + Boson(s)
ZH	e⁺e⁻ H , e+e− Z
WW	vvH ,vvZ
ZZ	ttH
ZHH	evW
ZZZ	vvWW, vvZZ
ZWW	ttbar
	Etc

Z to	BR	W to	BR	H(120,SM) to	BR
$\ell^+\ell^-$	10 %	$\ell^{\pm}\!\nu$	32 %	ℓ+ℓ-	<15 %
Qq (jets)	70 %	qq' (jets)	68 %	qq(jets),WW,ZZ	>85 %

In order to use all the produced events (the luminosity of the machine) It is needed to tag the bosons W,Z,H in their decays to jets

How? Particle Flow

Particle Flow needs

- 1) Reconstruction of ALL final state particles
- 2) Find charged particles in the tracker system
- 3) Find photons in the ECAL
- 4) Find neutral hadrons in ECAL and HCAL
 - 3) and 4) are only possible if there is no mixing between deposited energy from different particles
- Calorimeters should then
 - far away from IP
 - dense (small lateral spread of showers)
 - High granularity
 - Detector readout in 3D
 - Small pixel size (< Moliere radius)</p>
 - ECAL and HCAL inside the coil

Perfect Algorithm \rightarrow

Real Life:EfficiencyConfusion→E. CortinaRecons. Thres.

E _{jet} = E _{charged track} fraction 65%	s + E + E _h o 26% 9%
Charged track(s)	∆p/p ~qq 10 ⁻⁵
Photon(s)	∆ E/E ~ 12%
Neutral hadrons	∆ E/E ~ 45%

$$\sigma^{2}$$
jet = σ^{2} ch + $\sigma^{2}\gamma$ + $\sigma^{2}h^{\circ} \approx (0.14)^{2} E_{jet}$

How much should Calorimeters Improve?

100

110

E. Cortina

http://polywww.in2p3.fr/flc/calice.html

A high granularity calorimeter optimised for the Particle Flow measurement of multi-jets final state at the International Linear Collider running at a center-of-mass between 90 GeV and 1 TeV

- □ 200 physicist/engineers
- □ 38 institutes
- □ 11 countries

	Material	Pixel Size	RO layers	Readout
ECAL	W+Si	1X1 cm ²	20-30	Si Pad
ECAL	W+Scin	3x3 cm ²	20-30	Si Pms
AHCAL	Stell+Scin	4x4 cm ²	~50	Si Pms
DHCAL	Steel+Gas	1X1 cm ²	~50	RPC/GEM/uMega

15-250 Millions channels for ECAL ~50 Millions channels for HCAL

CALICE collaboration

□ Share major efforts □ Front-End Chips (HARDROC) □ Common DAQ Common Framework Analysis (Grid, Data Format...) Coordinate Test Beams MC Validation □ Now data and MC compatible but with error >20% □ No "loosers" politics Goal is to build the best calorimeter R&D motivated by physics analysis Working groups in each channel Easy to join □ Still lot of work needed to be done

CIEMAT participation

Feasibility study and contruction of a Digital Hadronic Calorimeter

CIEMAT participation

Feasibility study and construction of a Digital Hadronic Calorimeter

□ We will join CALICE coll before the end of the year

- □ 2 or 3 physicist
- □1 mechanical Engineer
- □ 1 electronic Engineer

□ Main activities to be done:

- 1) Participation in CALICE Test-Beams
- 2) Montecarlo and Analysis activities
- 3) Sensor Characterization
- 4) Detector Plane Design
- 5) 1 m³ prototype construction