

R and D Board report

Marc Ross (Fermilab) for ILC GDE R and D Board Valencia GDE meeting, November 7, 2006

ilc

Mission:

- The Global R&D Board is responsible for assessing and providing guidance for the overall R&D program.
 - The RDB will suggest priorities for
 - baseline
 - alternatives
 - selective (to) further the field in the longer term.
 - also detector
 - the balance between accelerator and detector
- The RDB will develop a
 - proposal-driven program
 - define goals and milestones,
 - evaluate resources on a common basis (i.e. value)
 - conduct reviews
 - identify gaps in coverage
 - resource or technical issues,
 - duplications
 - other

Charge & Performance - 2006

- Frascati mission announced (12/05)
- ILC MAC suggestions:
 - Produce an 'R D plan'
 - Led to formulation of the 'S-series' task forces
 - Inter-program prioritization
- Regional participation in prioritization process
 - US Americas Team recommendation
 - UK PPARC program evaluation
 - Japan (12/06 soon)
 - EU / Europe not yet
 - Detector RD (Beijing 2/07)

Reality – one year later

- S# series task forces:
 - Goals
 - Successes
- Task force with charge exists for
 - Cavities (#0), Cryomodule (#1), Test Linac (#2)
 - Damping Ring (#3)
 - Beam Delivery (#4)
 - Positron (#5)
- Structural differences
 - Example of the SRF cavity, BDS and DR areas.
- Need:
 - RF power, Global Systems, ?

S0 / S1 Task Force

- Charge
 - Provide the information needed for gradient choice
 - Time scales: mid 08 / end 09.
 - Phased approach to match design / cost effort
 - S0 cavity → gradient and yield
 - S1 cryomodule
- Focused charge, well defined deliverable, broad base, expensive task with excellent cost / benefit

S # Task Forces: 0

- Focus on the uncertainty apparent in the process
 - Key aspect of the technology; strong community support
- S0 'tight loop' plan:
 - 3 cavities from each region;
 - Each processed 3x; tested and retested in each region
 - Rotation
 - 27 total processing cycles (each cycle 7 to 10 days in full assembly line mode)
- S0 'tight loop' questions:
 - Which cavities?
 - EP Process capacity/ Vertical test capacity
 - Exchange and compatibility constraints
 - What are the required resources and impact on participants?
- How will it be managed?
 - How to ensure success (i.e. → good advice in mid 08)

S0 timeline

Early April MAC recommendation

May Charge, composition

June Proposal development

July Presentation VLCW

August Plan released

September TTC Invitation; initial J-Lab

October Single cell work at KEK

November EP at J-Lab, KEK, DESY,

publish schedule

Face to face meetings; fully balanced interregional involvement

S0 issues:

- US
 - ~ 4 Accel cavities in process
 - New vendor qualification underway
 - 2007 EP only at J-Lab, 2008 add ANL
 - Limited processing capacity in 07
 - Need cavities for NML module assembly
- EU
 - XFEL production cycles starting
 - XFEL needs yield assessment also
 - EP system in steady use most 'industrial' system existing
 - Tight loop work must be fit into busy schedule
- Japan
 - 'Ichiro' & STF baseline cavities → different...
 - Limited number of cavities until 10.07
 - good EP process capacity at KEK/Nomura Plating
 - Need cavities for STF cryomodule assembly
 - Ichiro HOM improvements needed
 - Flange gasket material incompatible with DESY practice
- <u>expert SRF leadership from all 3 regions</u>

'Production – like' part of S0

- (draft released ~ end 09/06, updated this month)
- Assess the yield
 - To facilitate the costing process
- To what precision?
 - Statistical process
 - (4x more effort to improve the yield estimate by 2x)
 - Does the RDR cost roll up support the necessity of this task?
- Plan (e.g. presented at ART 10.2006):
 - 125 in 08 & 218 in 09
 - (much smaller numbers likely for 07 ~20?)
 - Includes production-like processing facility creation
- Plan XFEL
 - DESY 6th/7th production ~ 60 cavities, typ. for industry
- Expensive, difficult to manage program

S0 Strategy: tradeoff between tight loop and RD

- Interwoven in S0 plan
 - Parallel single cell rinsing studies
 - (defined in TTC EP study 1.2005)
- Interaction with TTC
 - TTC is the resident 'pool' of SRF expertise
 - Thanks to DESY for the formation of this group through the TESLA effort (~10+ years)
 - Ideal group for RD, review and analysis
 - Requested TTC perform single cell work
 - September 2006
 - Affirmation of interest.

Structural differences e.g.: ILC Beam Test Facilities

- 3 construction projects underway
 - STF (KEK Asia) #1,2
 - Cryogenic linac test
 - NML (Fermilab Americas) # 1,2
 - same
 - ATF2 (KEK interregional) #4
 - Beam delivery optics, tuning test
- Consideration of damping ring test facility (s)
 - DESY, Cornell (#3)
 - Address issues not touched at ATF (KEK) like e+
- In addition ATF and TTF (Flash) (#1,2,3)
- Prioritization wrt single purpose RD

S # Task Forces: #3 Damping Ring

- Charge → 2 roles:
 - advise the RDB on the damping rings R&D plan,
 - support the coordination of R&D activities
- Broad program
- Difficult deliverable definitions
- Diverse base
- Difficult tasks
 - − → hands-on management
- Ongoing RDB / S3 responsibility
- What about the test facility proposals???

S3 issues –DR Test Facilities:

- What is the proposed R&D program, and how does it address the R&D needs of the ILC?
 - Justification for the test facility
- 2. Are there other facilities that could be used to carry out each element of the program?
 - Justification for THIS test facility
- 3. What resources are needed to carry through the program?
 - Cost / benefit of the proposed RD
 - (need RDR)
- 4. What is the timescale of the research?
- 5. What are the risks involved?
- Parallel with S2
 - test facilities are much smaller.

Structural differences: \$2 (string test) and industrialization 'gap'

- Charge:
 - Recommend a string test strategy;
 - follow up responsibility not defined;
- S2 and TTF/XFEL
 - Interaction with design effort
- Extremely expensive
- Poorly quantified deliverables
- Duplication / competition / standardization
- Cross threaded with mass-production issues and 'regional interest' issues
- R or D?
- Political management
 - Gap between design/cost effort and R and D

S2 is a referendum on the readiness of SRF 'systems' for ILC

- Also on the interdependencies of ILC / XFEL
 - XFEL system design / projectization effort now underway
- The more CM changes we make, more we need S2 for technical v/v development reasons
- For example:
 - XFEL will develop and test cryomodule type 3'
 - ILC is designing CM type 4
 - Cost reduction may mandate additional design effort CM5
 - Is a separate string test needed for the new type? Why?
 - Are the changes cost effective, including the cost / risk of the system test?

Internationalization of the RD process

- Project as a whole is predicated on success of links forged doing RD
- The RDB activities exhibit a strong international, balanced, involvement
 - Within GDE structure
- Diversity of technical approach
 - Important advantage of 'globalized' development
- Competition vs the strengthening of partnerships
- 'Regional interest'
- Value and cost of technical partnerships
 - What is the intrinsic cost of collaboration?

Gaps

- RDR should provide a new focus on needed 'development';
 - also need to revisit ACD
- RDB priorities come from Snowmass era evaluation of critical RD
 - With fresh cost information, we will be able to reassign priorities
- In the next ~ months, identify:
 - Gaps
 - Poor cost/benefit RD
- Reconsider priorities using RDR project schedule

Tracking issues

- Ownership of the R D process by GDE requires
 - Projectization (tracking, resource monitoring, technical milestones)
 - Communication
 - Reporting
 - Reviews
 - Progress Assessment
- Late 06:
 - Ranking
 - Proto-projectization
 - Planning
- The concept of ranking based on scoring

Tracking Tools & Issues

- Choice of Tools
 - Standard project tracking tools seem too formal for requirements at this stage
- Project categorization
 - Using relational database
 - Project characterization
 - Resources allocation
 - Funding plan association (multiple plans/task)
 - Project Tracking
 - Task dependencies tracked in relational DB
 - Export facilities
 - Excel files
 - MS Project for graphical visualization

Tracking Tool Implementation

- Technical tools at hand
- Key projects being implemented
 - \$0/\$1
 - S3: Damping rings
 - Already well formalised
 - **S5**
 - Positron Source
- Schedule
 - Single user version end of year
 - Gain experience
 - Expand to multi-user tool later
 - As requirements become clearer

The utilization and promotion of the test facilities.

- TTF:
- Frascati 12/05:
 - Strong criticism of the effective use of time at DESY TTF
 - (FLASH commissioning process)
- KEK 9/06:
 - Strong performance improvements at TTF/FLASH make a wide variety of tests compatible with VUV user operation
 - e.g. High gradient 'alternating pulse' operation
- Synergy with the FEL.
- ATF:
 - Transition from DR to BDS to DR test facility
 - 2x yearly Technical Board reviews

Future GDE / LC meetings: Focus on RD

- With the release of RDR, we recommend a GDE / LC meeting(s) with significant RD focus
 - Involve that half of the community
 - Provide visibility to a substantial effort
 - Launch the TDR process
- Agenda coming...