### Confronting Two Different Methods for Measuring SUSY Dark Matter in Co-annihilation Scenarios at ILC

#### Based on

- 1. P. Bambade, M. Berggren, F. Richard, Z. Zhang, hep-ph/040610
- 2. Hans-Ulrich Martyn, hep-ph/0408226
- 3. Recent development by M. Berggren, F. Richard, Z. Zhang

### Motivation

- □ Main results of hep-ph/040610 & hep-ph/0408226
- New recent development
- □ Summary

## Motivation

- Current precision on Dark Matter from WMAP: 10% or in  $2\sigma$  range: 0.094( $\Omega_{DM}h^{2}$ (0.129) 2%
- Future precision expected from Planck:
- → Questions for colliders: What are these non-baryonic DM? Any connection between DM and  $\chi$  LSP in SUSY? How precise can a LC measure DM relic density?

$$\Omega_{\tilde{\chi}_1^0} h^2 = m_{\tilde{\chi}_1^0} n_{\tilde{\chi}_1^0} \sim \int_0^{x_f} dx (\langle \sigma_{ann} \nu \rangle)^{-1}$$

ECFA06@Valencia, 6-10/11/2006

## DM vs. mSUGRA SUSY Model



→ The precision on SUSY DM prediction depends on △M & thus
δm<sub>x</sub>
→ Needs smuon (or selectron) analysis
δm<sub>stau</sub>
→ Needs stau analysis

ECFA06@Valencia, 6-10/11/2006

# The Main Results of hep-ph/0406010

#### □ Smuon analysis:

- > Benchmark point D:  $\Delta M = 224[m_{smuon}] 212[m_{\chi}] = 12GeV$
- > Ecm=500GeV, 500fb<sup>-1</sup>, unpolarized beams,  $\sigma$ =7.2 fb
  - $\rightarrow$  the smuon analysis fairly easy (w.r.t. the stau analysis)
  - →  $m_{smuon} \& m_{\chi}$  can be precisely determined from the muon spectrum with the end point method

#### Stau analysis:

- > Detailed analysis on D:  $\Delta M=217[m_{stau}]-212[m_{\chi}]=5GeV$
- > The analysis also applied to other benchmark points: A ( $\Delta$ M=7GeV), C( $\Delta$ M=9GeV), G( $\Delta$ M=9GeV), J( $\Delta$ M=3GeV)
- Ecm=442GeV (←Optimal Ecm method), 500fb<sup>-1</sup>, unpolarized beams, σ=0.46fb
- Challenge: background rejection
  - → the stau analysis difficult but feasible
  - → efficiency=5.7%,  $\delta m_{stau}$ =0.54GeV,  $\delta \Omega_{DM}$ =6.9%
  - → ~25% efficiency loss if 20 mrad crossing angle

# Why Optimal Ecm?



Note: This differs from a threshold scan measurement,  $\rightarrow$  Little sensitivity to the  $\sigma$  shape & corrections @ threshold

ECFA06@Valencia, 6-10/11/2006

## **Relative Stau Mass Precision**

Example with benchmark point D



→ Best sensitivity achieved with Ecm~2m<sub>stau</sub>: δm<sub>stau</sub>~0.4GeV
→ Higher Ecm does not help

Higher integrated luminosity and efficiency do

ECFA06@Valencia, 6-10/11/2006

## The Main Results of hep-ph/0408226

#### □ Smuon analysis:

- > Case study modified SPS 1a:  $\Delta M=143[m_{smuon}]-135[m_{\chi}]=8GeV$
- Ecm=400GeV, 200fb<sup>-1</sup>, polarized e-(0.8)/e+(0.6), σ=120 fb
  - →  $m_{smuon}$ =143.00±0.18 GeV,  $m_{\chi}$ =135.00±0.17 GeV
  - → Similarly:  $m_{selectron}$ =143.00±0.09 GeV,  $m_{\chi}$ =135.00±0.08 GeV
- Stau analysis:
- > Case study modified SPS 1a:  $\Delta M$ =133.2[m<sub>stau</sub>]-125.2[m<sub> $\chi$ </sub>]=8GeV
- Ecm=400GeV, 200fb<sup>-1</sup>, polarized e-(0.8)/e+(0.6),  $\sigma$ =140 fb  $\Rightarrow \delta m_{stau}$ =0.14GeV (based on  $\pi$ ,  $\rho$  and  $3\pi$  tau decay channels)  $\Rightarrow$  extrapolation to  $\Delta M$ =5GeV:  $\delta m_{stau}$ =0.22GeV  $\Delta M$ =3GeV:  $\delta m_{stau}$ =0.28 GeV
- > Another case study D:  $\Delta M=217.5[m_{stau}]-212.4[m_{\chi}]=5.1GeV$
- > Ecm=600GeV, 300fb<sup>-1</sup>, polarized e-(0.8)/e+(0.6),  $\sigma$ =50fb >  $\delta m_{stau}$ =0.15GeV (based on  $\pi$ ,  $\rho$  and  $3\pi$  tau decay channels)

### Analyzing Energy Spectra for Stau Mass Determination

Benchmark D (below) studied in \$\pi,\beta,3\pi\$ channels
Main idea: \$E\_{max} \leftarrow E\_{nu}=0\$
\$\Delta E\_{max}=f(m\_{stau}, m\_{\chi}, m\_{tau}, Ecm)\$
\$\delta m\_{stau}=f(E\_{max}, m\_{\chi}, m\_{tau}, Ecm) \delta E\_{max} + \delta m\_{\chi}\$



#### New Recent Development

- Cross-checking Uli's result in the same condition:
  - ✓ use same cuts as Uli, we reproduce his  $\tau$ - $\tau$   $\epsilon_{eff}$  of 7.6%
  - ✓ we have less selected events in  $\pi$ ,  $\rho$  &  $3\pi$  channels & our events consistent with the expectation
  - ✓ error propagation formula (Ecm=600GeV):

 $\delta m_{\tilde{\tau}} = 0.44 \delta E_{\tau}^{\max} \oplus 1.03 \delta m_{\gamma} \oplus 0.15 \delta m_{\tau} \qquad Ecm = 600 GeV$ 

New analyses under different beam conditions:

| Ecm (GeV) | Beam Pol.       | σ <b>(fb)</b> |
|-----------|-----------------|---------------|
| 600       | Unpol.          | 20            |
| 500       | 0.8(e-)/0.6(e+) | 25            |
| 500       | Unpol.          | 10            |

$$\delta m_{\tilde{\tau}} = 0.61 \delta E_{\tau}^{\max} \oplus 1.05 \delta m_{\chi} \oplus 0.12 \delta m_{\tau}$$

$$Ecm = 500GeV$$

ECFA06@Valencia, 6-10/11/2006

#### Stau Mass Determination

Uli's results (rough & educated estimate): 600GeV, 300fb<sup>-1</sup>, polarized beams: π: δE<sub>π</sub>=0.43 GeV ρ: δE<sub>ρ</sub>=0.27 GeV 3π: δE<sub>3π</sub>=0.32 GeVCombined:  $\delta E_r = 0.25 \text{ GeV}$  (assuming  $\delta m_v = 0.1 \text{ GeV}$ )  $\rightarrow \delta m_{sr} = 0.15 \text{ GeV}$ 

Our results (based on a polynomial fit (p2)): 600GeV, 300fb<sup>-1</sup>, polarized beams:  $\pi$ : δE<sub>π</sub>=0.30 GeV  $\rho$ : δE<sub>ρ</sub>=0.17 GeV 3π: δE<sub>3π</sub>=0.17 GeV Combined:  $\delta E_r = 0.10 \text{ GeV}$  (assuming  $\delta m_r = 0.1 \text{ GeV}$ )  $\rightarrow \delta m_{sr} = 0.11 - 0.13 \text{ GeV}$ 

600GeV, 300fb<sup>-1</sup>, unpolarized beams: Combined:  $\delta E_{\tau}=0.25 \text{ GeV}$  (assuming  $\delta m_{\gamma}=0.1 \text{ GeV}$ )  $\rightarrow \delta m_{s\tau}=0.14-0.17 \text{ GeV}$ 

500GeV, 300fb<sup>-1</sup>, polarized beams: Combined:  $\delta E_{\tau}=0.16 \text{ GeV}$  (assuming  $\delta m_{\gamma}=0.1 \text{ GeV}$ )  $\rightarrow \delta m_{s\tau}=0.13-0.20 \text{ GeV}$ 

500GeV, 500fb-1, unpolarized beams: Combined:  $\delta E_r = 0.18 \text{ GeV}$  (assuming dmc=0.1 GeV)  $\rightarrow \delta m_{sr} = 0.15 \text{ GeV}$ 

ECFA06@Valencia, 6-10/11/2006

## Results on the Stau Mass & Relic DM Density



ECFA06@Valencia, 6-10/11/2006

## Summary

- $\square$  LSP and smuon masses precisely measurable @ small  $\Delta M$
- □ Stau mass measurement @ small △M more challenging Two different methods confronted
- Depending on SUSY scenario, DM density precision @ LC can compete with expected precision from e.g. Planck