Study of the $\gamma \gamma \rightarrow q \bar{q}$ background to SUSY point D'

Mikael Berggren ${ }^{1}$
${ }^{1}$ LPNHE
Université de Paris VI \& VII
Contribution to the ILC workshop, Valencia, November 2006

Outline

(1) $\gamma \gamma$ cross-sections
(2) PYTHIA technicalities
(3) Adjusting the generator
4) Conclusions

Cross-section and event-generation time

PYTHIA obtains a total cross-section for $e^{+} e^{-} \rightarrow \gamma \gamma e^{+} e^{-} \rightarrow q \bar{q} e^{+} e^{-}$ at $E_{C M S}=500 \mathrm{GeV}$ of 28371 pb
(+ another 7170 pb if the diffractive and elastic components are included, but these classes do not contribute to high $P_{T \text { miss }}$-events)

- $\int L d t=500 \mathrm{fb}^{-1} \rightarrow 14 \times 10^{9}$ events are expected.
- 10 ms to generate one event.
- 10 ms to fastsim (SGV) one event.
$10^{8} \mathrm{~s}$ of CPU time is needed, ie more than 3 years. This goes to 3000 years with full simulation.

Cross-section and event-generation time

PYTHIA obtains a total cross-section for $e^{+} e^{-} \rightarrow \gamma \gamma e^{+} e^{-} \rightarrow q \bar{q} e^{+} e^{-}$ at $E_{C M S}=500 \mathrm{GeV}$ of 28371 pb
(+ another 7170 pb if the diffractive and elastic components are included, but these classes do not contribute to high $P_{T \text { miss }}$-events)

- $\int L d t=500 \mathrm{fb}^{-1} \rightarrow 14 \star 10^{9}$ events are expected.
- 10 ms to generate one event.
- 10 ms to fastsim (SGV) one event.
10^{8} s of CPU time is needed, ie more than 3 years. This goes to 3000 years with full simulation.

Cross-section and event-generation time

PYTHIA obtains a total cross-section for $e^{+} e^{-} \rightarrow \gamma \gamma e^{+} e^{-} \rightarrow q \bar{q} e^{+} e^{-}$ at $E_{C M S}=500 \mathrm{GeV}$ of 28371 pb
(+ another 7170 pb if the diffractive and elastic components are included, but these classes do not contribute to high $P_{T \text { miss }}$-events)

- $\int L d t=500 \mathrm{fb}^{-1} \rightarrow 14 \star 10^{9}$ events are expected.
- 10 ms to generate one event.
- 10 ms to fastsim (SGV) one event.
$10^{8} \mathrm{~s}$ of CPU time is needed, ie more than 3 years. This goes to 3000 years with full simulation.

Cross-section and event-generation time

PYTHIA obtains a total cross-section for $e^{+} e^{-} \rightarrow \gamma \gamma e^{+} e^{-} \rightarrow q \bar{q} e^{+} e^{-}$ at $E_{C M S}=500 \mathrm{GeV}$ of 28371 pb
(+ another 7170 pb if the diffractive and elastic components are included, but these classes do not contribute to high $P_{T \text { miss }}$-events)

- $\int L d t=500 \mathrm{fb}^{-1} \rightarrow 14 \star 10^{9}$ events are expected.
- 10 ms to generate one event.
- 10 ms to fastsim (SGV) one event.
$10^{8} \mathrm{~s}$ of CPU time is needed, ie more than 3 years. This goes to 3000 years with full simulation.

Cross-section and event-generation time

PYTHIA obtains a total cross-section for $e^{+} e^{-} \rightarrow \gamma \gamma e^{+} e^{-} \rightarrow q \bar{q} e^{+} e^{-}$ at $E_{C M S}=500 \mathrm{GeV}$ of 28371 pb
(+ another 7170 pb if the diffractive and elastic components are included, but these classes do not contribute to high $P_{T \text { miss }}$-events)

- $\int L d t=500 \mathrm{fb}^{-1} \rightarrow 14 \star 10^{9}$ events are expected.
- 10 ms to generate one event.
- 10 ms to fastsim (SGV) one event.
$10^{8} \mathrm{~s}$ of CPU time is needed, ie more than 3 years. This goes to 3000 years with full simulation.

Cross-section and event-generation time

PYTHIA obtains a total cross-section for $e^{+} e^{-} \rightarrow \gamma \gamma e^{+} e^{-} \rightarrow q \bar{q} e^{+} e^{-}$ at $E_{C M S}=500 \mathrm{GeV}$ of 28371 pb
(+ another 7170 pb if the diffractive and elastic components are included, but these classes do not contribute to high $P_{T \text { miss }}$-events)

- $\int L d t=500 \mathrm{fb}^{-1} \rightarrow 14 \star 10^{9}$ events are expected.
- 10 ms to generate one event.
- 10 ms to fastsim (SGV) one event.
$10^{8} \mathrm{~s}$ of CPU time is needed, ie more than 3 years. This goes to 3000 years with full simulation.

Clearly, there is need to reduce this number by one or two orders of magnitude, by using generator level cuts.

$\gamma \gamma$ classes

The $\gamma \gamma \rightarrow q \bar{q}$ generated by PYTHIA 6 is sub-divided into a number of classes. γ :s might be:

- Direct: The γ interacts via a virtual fermion.
e VПMA. The \sim has fluctuated into a p, which interacts.
- Anomalous: The γ has fluctuated into a heavier vector-meson, which interacts.
- DIS: The γ is highly virtual, and the interaction is best described as deep inelastic electron scattering on a vector-meson.

$\gamma \gamma$ classes

The $\gamma \gamma \rightarrow q \bar{q}$ generated by PYTHIA 6 is sub-divided into a number of classes. γ :s might be:

- Direct: The γ interacts via a virtual fermion.
- VDM: The γ has fluctuated into a ρ, which interacts.
- Anomalous: The γ has fluctuated into a heavier vector-meson, which interacts.
- DIS: The γ is highly virtual, and the interaction is best described as deep inelastic electron scattering on a vector-meson.

Cross-sections per class

The total cross-section of 28371 pb breaks down like this:

Class	Cross-section [pb]
VDM-VDM	15770
A-A	505
D-D	2370
VDM-A	5554
VDM-D	2246
A-D	483
DIS-VDM	909
DIS-A	435

P_{T} distribution of the classes

Generator-level cuts

PYTHIA allows to restrict event-generation to certain ranges in the key kinematic variables in $\gamma \gamma \rightarrow q \bar{q}$ reactions. :

- min and max x_{B}, first and second
- min and $\max Q^{2}$, first and second
- min and max θ first and second e
- min and max y_{B}, first and second
- min and max invariant mass of the $\gamma \gamma$-system

Don't restrict θ : not much gain, might kill candidates
Cut on $Q^{2} \equiv$ cut on θ.
$y_{B} \approx x_{B} \rightarrow$ only useful to cut on either of these.

Lower cut on $x_{B} \approx 0.005$: Events with P_{T} miss below $2.5 \mathrm{GeV} / \mathrm{c}$ must be cut out (worst possible case of no-tag $\gamma \gamma$).

Generator-level cuts

PYTHIA allows to restrict event-generation to certain ranges in the key kinematic variables in $\gamma \gamma \rightarrow q \bar{q}$ reactions. :

- min and $\max x_{B}$, first and second γ
- min and $\max Q^{2}$, first and second γ
- min and $\max \theta$, first and second e
- min and max y_{B}, first and second γ
- min and max invariant mass of the $\gamma \gamma$-system

Don't restrict θ : not much gain, might kill candidates
Cut on $Q^{2} \equiv$ cut on θ.
$y_{B} \approx x_{B} \rightarrow$ only useful to cut on either of these.
Lower cut on $x_{B} \approx 0.005$: Events with P_{T} miss below $2.5 \mathrm{GeV} / \mathrm{c}$ must be cut out (worst possible case of no-tag $\gamma \gamma$).

Generator-level cuts

PYTHIA allows to restrict event-generation to certain ranges in the key kinematic variables in $\gamma \gamma \rightarrow q \bar{q}$ reactions. :

- min and $\max x_{B}$, first and second γ
- min and $\max Q^{2}$, first and second γ
- min and max θ, first and second e
- min and max y_{B}, first and second γ
- min and max invariant mass of the $\gamma \gamma$-system

Don't restrict θ : not much gain, might kill candidates
$y_{B} \approx x_{B} \rightarrow$ only useful to cut on either of these.

Lower cut on $x_{B} \approx 0.005$: Events with P_{T} miss below $2.5 \mathrm{GeV} / \mathrm{c}$ must be cut out (worst possible case of no-tag $\gamma \gamma$).

Generator-level cuts

PYTHIA allows to restrict event-generation to certain ranges in the key kinematic variables in $\gamma \gamma \rightarrow q \bar{q}$ reactions. :

- min and $\max x_{B}$, first and second γ
- min and $\max Q^{2}$, first and second γ
- min and max θ, first and second e
- min and max y_{B}, first and second γ
- min and max invariant mass of the $\gamma \gamma$-system

Don't restrict θ : not much gain, might kill candidates Cut on $Q^{2} \equiv$ cut on θ.
$y_{B} \approx x_{B} \rightarrow$ only useful to cut on either of these.

Lower cut on $x_{B} \approx 0.005$: Events with P_{T} miss below $2.5 \mathrm{GeV} / \mathrm{c}$ must be cut out (worst possible case of no-tag $\gamma \gamma$).

Generator-level cuts

PYTHIA allows to restrict event-generation to certain ranges in the key kinematic variables in $\gamma \gamma \rightarrow q \bar{q}$ reactions. :

- min and $\max x_{B}$, first and second γ
- min and max Q^{2}, first and second
- min and max θ, first and second e
- min and max y_{B}, first and second γ
- min and max invariant mass of the $\gamma \gamma$-system

Don't restrict θ : not much gain, might kill candidates Cut on $Q^{2} \equiv$ cut on θ. $y_{B} \approx x_{B} \rightarrow$ only useful to cut on either of these.

Lower cut on $x_{B} \approx 0.005$: Events with P_{T} miss below $2.5 \mathrm{GeV} / \mathrm{c}$ must be cut out (worst possible case of no-tag $\gamma \gamma$)

Generator-level cuts

PYTHIA allows to restrict event-generation to certain ranges in the key kinematic variables in $\gamma \gamma \rightarrow q \bar{q}$ reactions. :

- min and $\max x_{B}$, first and second γ
- min and max Q^{2}, first and second
- min and max θ, first and second e
- min and max y_{B}, first and second
- min and max invariant mass of the $\gamma \gamma$-system

Don't restrict θ : not much gain, might kill candidates
Cut on $Q^{2} \equiv$ cut on θ.
$y_{B} \approx x_{B} \rightarrow$ only useful to cut on either of these.

Lower cut on $x_{B} \approx 0.005$: Events with P_{T} miss below $2.5 \mathrm{GeV} / \mathrm{c}$ must be cut out (worst possible case of no-tag $\gamma \gamma$).

Signal Preselection

SUSY point $D^{\prime}\left(M_{l s p}=212 \mathrm{GeV}, M_{\tilde{\tau}}=217 \mathrm{GeV}\right)$:

- Charged multiplicity between 2 and 10 (signal is two $\tau: \mathrm{s}$).
- No jet with $\mathrm{P}>8 \mathrm{GeV} / \mathrm{c}$ (the kinematic limit in point D^{\prime}).
$-<100 \mathrm{GeV}$ in 30deg forward cone (killing the tagged $\gamma \gamma$ events).
- Thrust axis above 30deg (staus are scalars, $\gamma \gamma$ is t-channel).
- Total charge 0 (cuts events with one lost charged particle).
- Seen mass above $1 \mathrm{GeV} / \mathrm{c}^{2}$ (likely for the signal, unlikely for $\gamma \gamma$).

Need to find generator cuts that doesn't touch $\gamma \gamma$ passing these cuts, and at the same time reduces those that doesn't pass the cuts by a large factor.

Signal Preselection

SUSY point D' ($\left.M_{\text {lsp }}=212 \mathrm{GeV}, M_{\tilde{\tau}}=217 \mathrm{GeV}\right)$:

- Charged multiplicity between 2 and 10 (signal is two $\tau: \mathbf{s}$).
- No jet with $\mathrm{P}>8 \mathrm{GeV} / \mathrm{c}$ (the kinematic limit in point D^{\prime}).
$-<100 \mathrm{GeV}$ in 30deg forward cone (killing the tagged $\gamma \gamma$ events).
- Thrust axis above 30deg (staus are scalars, $\gamma \gamma$ is t-channel).
- Total charge 0 (cuts events with one lost charged particle).
- Seen mass above $1 \mathrm{GeV} / c^{2}$ (likely for the signal, unlikely for $\gamma \gamma$).

Need to find generator cuts that doesn't touch $\gamma \gamma$ passing these cuts, and at the same time reduces those that doesn't pass the cuts by a large factor.

Signal Preselection

SUSY point D' ($\left.M_{l s p}=212 \mathrm{GeV}, M_{\tilde{\tau}}=217 \mathrm{GeV}\right)$:

- Charged multiplicity between 2 and 10 (signal is two $\tau: \mathrm{s}$).
- No jet with $P>8 \mathrm{GeV} / \mathrm{c}$ (the kinematic limit in point D^{\prime}).
- $<100 \mathrm{GeV}$ in 30deg forward cone (killing the tagged $\gamma \gamma$ events).
- Thrust axis above 30deg (staus are scalars, $\gamma \gamma$ is t-channel)
- Total charge 0 (cuts events with one lost charged particle).
- Seen mass above $1 \mathrm{GeV} / \mathrm{c}^{2}$ (likely for the signal, unlikely for $\gamma \gamma$).

Need to find generator cuts that doesn't touch $\gamma \gamma$ passing these cuts, and at the same time reduces those that doesn't pass the cuts by a large factor.

Signal Preselection

SUSY point D' ($\left.M_{\text {lsp }}=212 \mathrm{GeV}, M_{\tilde{\tau}}=217 \mathrm{GeV}\right)$:

- Charged multiplicity between 2 and 10 (signal is two $\tau: \mathrm{s}$).
- No jet with $P>8 \mathrm{GeV} / \mathrm{c}$ (the kinematic limit in point D^{\prime}).
$-<100 \mathrm{GeV}$ in 30deg forward cone (killing the tagged $\gamma \gamma$ events).
- Total charge 0 (cuts events with one lost charged particle)
- Seen mass above $1 \mathrm{GeV} / c^{2}$ (likely for the signal, unlikely for $\gamma \gamma$).

Need to find generator cuts that doesn't touch $\gamma \gamma$ passing these cuts, and at the same time reduces those that doesn't pass the cuts by a large factor.

Signal Preselection

SUSY point D' ($\left.M_{\text {lsp }}=212 \mathrm{GeV}, M_{\tilde{\tau}}=217 \mathrm{GeV}\right)$:

- Charged multiplicity between 2 and 10 (signal is two $\tau: \mathrm{s}$).
- No jet with $P>8 \mathrm{GeV} / \mathrm{c}$ (the kinematic limit in point D^{\prime}).
$-<100 \mathrm{GeV}$ in 30deg forward cone (killing the tagged $\gamma \gamma$ events).
- Thrust axis above 30deg (staus are scalars, $\gamma \gamma$ is t-channel).
- Total charge 0 (cuts events with one lost charged particle).
- Seen mass above $1 \mathrm{GeV} / c^{2}$ (likely for the signal, unlikely for $\gamma \gamma$).

Need to find generator cuts that doesn't touch $\gamma \gamma$ passing these cuts, and at the same time reduces those that doesn't pass the cuts by a large factor.

Signal Preselection

SUSY point D' ($\left.M_{\text {lsp }}=212 \mathrm{GeV}, M_{\tilde{\tau}}=217 \mathrm{GeV}\right)$:

- Charged multiplicity between 2 and 10 (signal is two $\tau: \mathrm{s}$).
- No jet with $\mathrm{P}>8 \mathrm{GeV} / \mathrm{c}$ (the kinematic limit in point D^{\prime}).
$-<100 \mathrm{GeV}$ in 30deg forward cone (killing the tagged $\gamma \gamma$ events).
- Thrust axis above 30deg (staus are scalars, $\gamma \gamma$ is t-channel).
- Total charge 0 (cuts events with one lost charged particle).

Need to find generator cuts that doesn't touch $\gamma \gamma$ passing these cuts, and at the same time reduces those that doesn't pass the cuts by a large factor.

Signal Preselection

SUSY point $D^{\prime}\left(M_{l s p}=212 \mathrm{GeV}, M_{\tilde{\tau}}=217 \mathrm{GeV}\right)$:

- Charged multiplicity between 2 and 10 (signal is two $\tau: \mathrm{s}$).
- No jet with $\mathrm{P}>8 \mathrm{GeV} / \mathrm{c}$ (the kinematic limit in point D^{\prime}).
$-<100 \mathrm{GeV}$ in 30deg forward cone (killing the tagged $\gamma \gamma$ events).
- Thrust axis above 30deg (staus are scalars, $\gamma \gamma$ is t-channel).
- Total charge 0 (cuts events with one lost charged particle).
- Seen mass above $1 \mathrm{GeV} / c^{2}$ (likely for the signal, unlikely for $\gamma \gamma$).

Need to find generator cuts that doesn't touch $\gamma \gamma$ passing these cuts, and at the same time reduces those that doesn't pass the cuts by a large factor.

Signal Preselection

SUSY point D' ($\left.M_{l s p}=212 \mathrm{GeV}, M_{\tilde{\tau}}=217 \mathrm{GeV}\right)$:

- Charged multiplicity between 2 and 10 (signal is two $\tau: \mathrm{s}$).
- No jet with $\mathrm{P}>8 \mathrm{GeV} / \mathrm{c}$ (the kinematic limit in point D^{\prime}).
$-<100 \mathrm{GeV}$ in 30deg forward cone (killing the tagged $\gamma \gamma$ events).
- Thrust axis above 30deg (staus are scalars, $\gamma \gamma$ is t-channel).
- Total charge 0 (cuts events with one lost charged particle).
- Seen mass above $1 \mathrm{GeV} / c^{2}$ (likely for the signal, unlikely for $\gamma \gamma$).

Need to find generator cuts that doesn't touch $\gamma \gamma$ passing these cuts, and at the same time reduces those that doesn't pass the cuts by a large factor.

The iterations

Can't find generator cuts that reduce the cross-section by more than a factor 3 , while keeping the number of events passing the cuts unchanged, if the natural mix of the 8 classes is generated together.
need to treat each class separately.
Can't find the cuts in a single go: Takes to much time to get enough events in the signal-like region
\rightarrow need to iterate
In all iterations, 10000000 events were produced in each of the 8 classes. Plot $P_{T \text { miss }}$ vs the lowest x_{B}, vs the highest x_{B}, and vs W in each class. Determine the corresponding cuts. The $P_{T \text { miss }}$ distribution with and without cuts was checked.

The iterations

Can't find generator cuts that reduce the cross-section by more than a factor 3 , while keeping the number of events passing the cuts unchanged, if the natural mix of the 8 classes is generated together.
\rightarrow need to treat each class separately.

The iterations

Can't find generator cuts that reduce the cross-section by more than a factor 3 , while keeping the number of events passing the cuts unchanged, if the natural mix of the 8 classes is generated together.
\rightarrow need to treat each class separately.
Can't find the cuts in a single go: Takes to much time to get enough events in the signal-like region
need to iterate
 each class. Determine the corresponding cuts. The $P_{T \text { miss }}$ distribution with and without cuts was checked.

The iterations

Can't find generator cuts that reduce the cross-section by more than a factor 3 , while keeping the number of events passing the cuts unchanged, if the natural mix of the 8 classes is generated together.
\rightarrow need to treat each class separately.
Can't find the cuts in a single go: Takes to much time to get enough events in the signal-like region
\rightarrow need to iterate
 each class. Determine the corresponding cuts. The $P_{T \text { miss }}$ distribution with and without cuts was checked.

The iterations

Can't find generator cuts that reduce the cross-section by more than a factor 3, while keeping the number of events passing the cuts unchanged, if the natural mix of the 8 classes is generated together.
\rightarrow need to treat each class separately.
Can't find the cuts in a single go: Takes to much time to get enough events in the signal-like region
\rightarrow need to iterate
In all iterations, 10000000 events were produced in each of the 8 classes. Plot $P_{T \text { miss }}$ vs the lowest x_{B}, vs the highest x_{B}, and vs W in each class. Determine the corresponding cuts.
The $P_{T \text { miss }}$ distribution with and without cuts was checked.

The iterations

$P_{T \text { miss }}$ distributions for the different cut-sets.

- The total reduction of the cross-section is about an order of magnitude
- The curves coincide above $P_{T \text { miss }}=3 \mathrm{GeV}$.
- The signal emerging out of the background by consecutive cuts.

Pre-selection cuts, different generator cuts

The iterations

$P_{T \text { miss }}$ distributions for the different cut-sets.

- The total reduction of the cross-section is about an order of magnitude
- The curves coincide above $P_{T \text { miss }}=3 \mathrm{GeV}$.
- The signal emerging out of the background by consecutive cuts.

Generator cut set 2, different data cuts

The iterations

The table shows the cuts after each iteration, and the cross-section after cuts.

Class	x_{B} \min	\max	W \min	\max	$\sigma[\mathrm{pb}]$	x_{B} \min	max	W \min	\max	$\sigma[\mathrm{pb}]$
VDM-VDM	.005	.2	3.4	40.	8392	.014	.125	8.	40.	3328
A-A	.005	.2	3.	35.	134.5	.012	.1	7.	35.	51.85
D-D	.008	.15	2.	500.	232.5	.009	.08	9.	500.	91.66
VDM-A	.004	.25	3.	500.	2026	.01	.23	8.	50.	950.2
VDM-D	.005	1.0	5.	60.	1178	.012	.2	8.	60.	555.4
A-D	.008	.3	5.	500.	198.1	.011	.11	9.	30.	71.74
DIS-VDM	.0025	1.0	2.	500.	499.4	.008	1.0	10.	500.	204.2
DIS-A	.002	.15	1.5	500.	190.5	.01	.15	7.	500.	29.84

Conclusions

- One must be able to reduce the needed number of simulated $\gamma \gamma$ events by two orders of magnitude.
- By iteratively adjusting PYTHIA's generator-level cuts on x_{B} and W in such a way that the part of the phase-space that passes the preselection cuts of the analysis remains unchanged, this is doable.
- The adjustment needs to be done separately for each of the classes.
- Even so, sizable computer resources are needed, even for SGV.

Conclusions

- One must be able to reduce the needed number of simulated $\gamma \gamma$ events by two orders of magnitude.
- By iteratively adjusting PYTHIA's generator-level cuts on x_{B} and W in such a way that the part of the phase-space that passes the preselection cuts of the analysis remains unchanged, this is doable.
- The adjustment needs to be done separately for each of the classes.
- Even so, sizable computer resources are needed, even for SGV.

Conclusions

- One must be able to reduce the needed number of simulated $\gamma \gamma$ events by two orders of magnitude.
- By iteratively adjusting PYTHIA's generator-level cuts on x_{B} and W in such a way that the part of the phase-space that passes the preselection cuts of the analysis remains unchanged, this is doable.
- The adjustment needs to be done separately for each of the classes.
- Even so, sizable computer resources are needed, even for SGV.

Conclusions

- One must be able to reduce the needed number of simulated $\gamma \gamma$ events by two orders of magnitude.
- By iteratively adjusting PYTHIA's generator-level cuts on x_{B} and W in such a way that the part of the phase-space that passes the preselection cuts of the analysis remains unchanged, this is doable.
- The adjustment needs to be done separately for each of the classes.
- Even so, sizable computer resources are needed, even for SGV.

