Higgs trilinear self coupling Revisited

Djamel BOUMEDIENE, Pascal GAY

LPC Clermont-Ferrand

ECFA Valencia 11-2006

Higgs trilinear self coupling Revisited

Reminder : higgs self coupling @ 500 GeV C. Castanier, P. Gay, P. Lutz, J. Orloff

Hep-ex/0101028 LC-PHSM-2000-061

- Study of the experimental feasibility of the measurement
- $\Delta\lambda/\lambda$ measured with 3 hhZ selections
- Relative precision on $\Delta\lambda/\lambda$ = 18% (for a Luminosity of 2 ab⁻¹, m_h = 120 GeV/c²)

• Analysis :

- Use of the reconstructed masses
- Use of the 4-b signature of hhZ events
- Use of both Neural Network and Cut analyses
- $\bullet \, \sigma$ extracted by a likelihood method
- selection performance : $s/\sqrt{s+b} = 5.7$

hhZ @ 500 GeV

• The aim

- Perform an independant analysis
- Optimize the analysis
- Include the missing backgrounds
- remove part of background double countings

Context

- √s = 500 GeV
- Energy flow resolution $\Delta E/\sqrt{E} = 30\%$
- typical b-tag efficiency = 90%

Monte Carlo production

- Events generated with Whizard
- Fast detector simulation

MC production @ 500 GeV

Processes	σ(pb)	N Generated	Generated luminosity (pb ⁻¹)	N expected (L = 500 pb ⁻¹)	
hhZ	0,18441	15k	81340,49	92,2	
Backgrounds	699	1820k		332167	
tt	526,4	740k	1880,7	263200	←
ZZZ	1,051	40k	38059,0	525	
tbtb	0,7	20k	28571,4	350	
ZZ	45,12	50k	1108,2	22560	←
nntt	0,141327	20k	141515,8	70	
wwz	35,3	130k	3682,7	17650	←
wtb	16,8	200k	2976,2	8400	
eezz	0,287	10k	34843,2	143	
nnww	3,627	30k	8271,3	1813	
evzw	10,094	60k	5944,1	5047	
nnzz	1,08257	20k	18474,6	541	
ttZ	0,6975	20k	28673,8	541	

Main backgrounds

- Global variables
 - visible energy
 - sphericity
 - m_{hemispheres}
- Event reconstruction
 - clusturisation (in 4 and 6 jets)
 - jet pairing based on di-jet masses associated to bosons

- boson masses
- χ^2 (hhZ, hZ, ZZZ,WW,ZZ)
- \Rightarrow Test process hypothesis based on the expected masses of h,Z,W.

Use of the b-tag

- b-tagging efficiency fixed to 90%
- \Rightarrow c efficiency = 40%

• Definition of an estimator by event based on the jet b-tag

- \rightarrow independent from EFlow
- \rightarrow Unused in jet combinatory

(Richard Hawkings parametrisation)

4

5

Neural network

 \rightarrow Multivariable method is adopted to take into account the correlation between selection variables

 \rightarrow Two Neural Network packages are tested

 \rightarrow MLP Fit (implemented in PAW and ROOT)

 \rightarrow CFMipANN package

Neural network

MLP Fit

Input variables : $\chi^2_{2bosons}$, $\chi^2_{3bosons}$, Event-b-tag, Global variables (evis, sphericity)

```
\rightarrow cut on NN output at 0.7 leads to
```

 $s/\sqrt{s+b} = 5.6$ (for 2 ab⁻¹)

 \rightarrow NN instabilities (NN output can be greater then 1, convergence problem)

 \rightarrow Careful use needed

CFMipANN

```
\rightarrow cut on NN output at 0 leads to
```

 $s/\sqrt{s+b} = 5.9$ (for 2 ab⁻¹)

 \rightarrow no instabilities : no nn output values greater then 1

nn selection of hhZ @ 500 GeV : Results

Processes	σ(pb)	N Generated	generated lumi. (pb-1)	N selected	Eff	N attendu (L = 500 pb- 1)
hhZ	0,18441	15K	81340,5	4435	29,56%	27,3
Background						16,8
tt	526,4	740K	1880,7	15	0,001%	5,3
ZZZ	1,051	40K	38059,0	115	0,733%	1,5
tbtb	0,7	20K	28571,4	339	4,995%	5,9
ZZ	45,12	50K	1108,2	0	0,010%	0
nntt	0,141327	20K	141515,8	0	0,000%	0,0
WWZ	35,3	130K	3682,7	0	0,002%	0,0
wtb	16,8	200K	2976,2	10	0,008%	0,4
eezz	0,287	10K	34843,2	11	0,070%	0,2
nnww	3,627	30K	8271,3	0	0,000%	0,00
evzw	10,094	60K	5944,1	0	0,000%	0,00
nnzz	1,08257	20K	18474,6	1	0,015%	0,03
ttZ	0,6975	20K	28673,8	112	2,590%	1,9

hhZ N_{expected} (for Br (h \rightarrow bb) = 85.3%) = 27.3 \Rightarrow to be corrected by a factor 1/1.582

hhZ N_{expected} (for Br (h \rightarrow bb) = 67.8%) = 17.2 (Following results include the correction)

Results

• Selection caracteristics • $\sqrt{s} = 500 \text{ GeV}$	Selection	Present analysis	Paper
• Br(h→bb) = 62% • Lumi. = 2 ab ⁻¹	Signal Br(h→bb) = 62%	hhqq 69	hhqq 110 hhll 25
	Signal eff.	29%	46%
	Background	67	257
	s/√(s+b)	hhqq 5.9	hhqq 5.7

• $\Delta\lambda/\lambda \sim 1.75 \ d\sigma/\sigma$

• since a similar significance is obtain includind this time missing background and removing part of the doubling counting a relative precision of 18% is reachable

• better results may be expected

•when $hhZ \rightarrow hhll$ are included

•Vertex charge put in the game

SUMMARY

EFlow and b-tag impact

 \rightarrow EFlow, b-tag, vertex charge impact on $\Delta\lambda/\lambda$ will be studied independently

 \rightarrow Which improvement on $\Delta\lambda\lambda$ for a better $\Delta E/\sqrt{E}$?

 \rightarrow What is the optimal btag ?

• higher $\varepsilon_{\rm b}$?

high b-tag efficiency ($\varepsilon_{\rm b} > 90\%$)

 \Rightarrow high c contamination

 \Rightarrow more background events are signal-like

 \Rightarrow significance loss

 \rightarrow What do we gain if we include the vertex charge ?

 \rightarrow Investigation running, results expected soon