Summary table of POWER report: Tab 4.1

maat (000/ 600/)

Comparison with (80%,0): estimated gain factor when

		most (80%, 60%) (80%, 30%)
Case	Effects for $P(e^-) \longrightarrow P(e^-)$ and $P(e^+)$	Gain& Requirement	
Standard Model:			
top threshold	Electroweak coupling measurement	factor 3	gain factor 2
$tar{q}$	Limits for FCN top couplings improved	factor 1.8	gain factor 1.4
CPV in $t\bar{t}$	Azimuthal CP-odd asymmetries give	$P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required	P ^T _{e-} P ^T _{e+} required
	access to S- and T-currents up to 10 TeV		factor 1.3 worse
W^+W^-	Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{B}}$	up to a factor 2	
	TGC: error reduction of $\Delta \kappa_{\gamma}$, $\Delta \lambda_{\gamma}$, $\Delta \kappa_{Z}$, $\Delta \lambda_{Z}$	factor 1.8	
	Specific TGC $\tilde{h}_+ = \text{Im}(g_1^{\text{R}} + \kappa^{\text{R}})/\sqrt{2}$	$P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required	P ^T _{e-} P ^T _{e+} required
CPV in γZ	Anomalous TGC $\gamma\gamma Z$, γZZ	$P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required	
HZ	Separation: $HZ \leftrightarrow H\bar{\nu}\nu$	factor 4	gain factor 2
	Suppression of $B = W^+ \ell^- \nu$	factor 1.7	
$t \bar{t} H$	Top Yukawa coupling measurement at $\sqrt{s} = 500 \text{ GeV}$	factor 2.5	gain factor 1.6

Question of the parameter group — our answers?

- At which lumi become systematics dominant?
- Impact of reducing beamstrahlung by factor 2? (lumi vs background?)
- Any benefit from (80%,60%) versus (90%,0)?
- Influence from any other accelerator parameters?
 - → Top mass measurement: precision at a) threshold, b) 500 GeV?
 P(e+) needed
 - Higgs (120 GeV): Precision for mass measurement at a) threshold,
 b) maximum of ZH cross section, c) 500 GeV? factor 4 vs 2 in sep.
 - Precision for top Higgs coupling at a) 500 GeV, b) 1 TeV ? gain factor 2.4 vs. 1.1

 Precision of BR(H -> tau-pairs) ?
 - → Precision of Z' couplings at a) 500 GeV, b) 1 TeV ? systematics under control
 - Precision of SUSY particle properties (e.g. masses) a) in the light stau coannihilation region, b) <u>light neutralino</u> χ⁰₁, χ⁰₂ production ? more observables properties more general: P(e+) needed

Discussion (thanks to Mike Woods, Eric Torrence, Peter Schmid, Tom Rizzo,)

- Physics: shall we also write / answer to the questions of the parameter group?
 - even higher e- pol. can not compensate effects from pol. e+
- Physics: shall we write-up the physics case for pol. e+ with P(e+)=30%?
- Machine: what is needed to exploit 30% polarization?
 - → how much low dc polarization without spin rotators? (Mike: ~0.05% but has to be measured)
 - spin rotator for LTR
 - already flipping needed ? which scheme useful? kickers?
 - costs for add. polarimeter? but anyway needed to measure low dc polarization?
- Machine: change request useful to exploit 30%?
- What else? Did we overlook something?