Total hadronic cross- Liven sections: from LHC to ILC

[Giulia Pancheri - INFN-Frascati]

Presented by M. Krawczyk

QCD tests

Models for total cross-section

Models for total cross-section

- The interest lies in QCD role
- What is the Pomeron?
 The Reggeon?
- Are these concepts universal?
- Or do they just phenomenologically describe our ignorance?
- How can ILC help?

A.de Roeck, R. Godbole, A. Grau, G.Pancheri, JHEP 2003

S^{ϵ} : Should ϵ be the same for all hadronic cross-sections?

Yes if the model

 is based on Regge poles and a universal Pomeron pole exchange

$$\sigma$$
=Bs^{-η} + As^ε

Not necessarily if

 The model has some connection with QCD and parton densities play a role

A fit to LEP data shows that ϵ is not the same for proton and photon crosssections

$σ=Bs^{-η} + As^ε + Cs^ε$

A realistic QCD model should relate the fit to QCD phenomenological inputs quantities like densities etc.

The Bloch-Nordsiek Eikonal Minijet model includes k_t resummation

R.Godbole, A. Grau, G.Pancheri, Y.Srivastava PRD 2005 A. Corsetti, A. Grau, G.Pancheri, Y. Srivastava PLB 1996

- Multiple parton interactions : optical theorem and eikonal representation for T_{el}(s,t)
- 2. Hard scattering to drive the rise due to 1/x
- 3. Soft gluons down to zero momentum to tame the rise

The hard cross-section

Mini-jet cross-section

In all mini-jet models densities make all the difference between photon and proton processes

Proton-proton and proton-antiproton

Most commonly used densities

- GRV
- CTEQ
- MRST

γ-proton and γγ

Most commonly used densities

- GRV
- GRS
- CJKL

Soft resummation

Probablity of total K_T from infinite # of soft gluons

 $\int d^2b e^{iK_{\tau}b} \exp\{-\int d^3n(k)[1-e^{-ik_{\tau}b}]\}$

depends upon single gluon energy

- > maximum : use Kinematics
- minimum: 0 from Bloch-Nordsieck theorem

Role of resummation

An infinite number of soft quanta

 down to zero momentum but how? next slides

- Up to an energy dependent limit q_{max}
 - Higher hadron energy possibility
 of more small x partons with "high energy"
 (≈1-2 GeV) higher q_{max}

Maximum soft gluon energy

- q₁ and q₂: any two partons
- X : the 2-jet final state
- Q²≥4 p²_{tmin}
- q_{max} depends on x₁,x₂
- We average over densities

Zero momentum quanta

- Soft gluons need to be resummed if they are indeed soft ≈1/k
- Resummation implies integration over dk_t
- What matters will be $\int \alpha_s(k_t) dk_t f(k_t)$ and not $\alpha_s(0)$

Models for infrared behaviour

Soft gluons give b-distributions

In eikonal representation

$$\sigma_{tot} \approx 2 \int d^2b \left[1 - e^{-n(b,s)/2} \right]$$

- n(b,s)=average # of collisions at distance b, at energy √s
- b-distribution is needed

Our ansatz:

b-distribution = Fourier transform of soft gluon K_t distribution

Resummation of soft gluons down to $k_{t}=0$

- Gluon emission in k_t changes the collinearity of initial partons
- And for same energy and p_{tmin}, acollinearity of initial partons will bring loss of luminosity of the parton beams and parton-parton cross-sections will decrease
- As the energy available for soft gluon emission increases, so does the acollinearity of the parton-parton collision
- The rate of rise of total cross-sections due to rising minijet cross-section is reduced (softened by) by soft gluon emissions.
- Softening effect more important the more singular α_s

We shall illustrate how the model works for the proton-proton case and then show its application to γγ

How the model works

- Choose p_{tmin} = 1÷2 GeV for mini-jets
- Choose parton densities
- Calculate minijet x-section
- Calculate q_{max} for soft gluons
- Calculate A(b,s) for given q_{max}
- Calculate n_{hard} (b,s)=A(b,s) $\sigma_{jet}(p_{tmin},s)$
- Parametrize n_{soft}
- Evaluate n(b,s)= n_{soft} + n_{hard}
- Eikonalize σ_{tot}≈2∫d²b [1-e^{-n(b,s)/2}]

q_{max} for ptmin=1.15 geV

σ_{jet} for p_{tmin} =1.15 GeV

ZU

Comparison with proton data

R.Godbole,
A. Grau
R. Hedge
G. Pancheri
Y. Srivastava
Les Houches 2005
Pramana 67 (2006)

GGPS PRD 2005

Now apply the model to $\gamma\gamma$

Choose $p_{tmin} = 1 \div 2$ GeV for mini-jets and parton densities

For photons, LEP data suggest

$$p_{tmin} \sim 1.3 \div 1.8 \text{ GeV}$$

- Gluck Reya Vogt
- Gluck Reya Shielbein
- Cornet Jankowski Lorca Krawczyk

Eikonalize $\sigma_{tot} \approx 2P_{had} \int d^2b \left[1-e^{-n(b,s)/2}\right]$ and compare with data

P_{had} is a
Phenomenological
input describing
the hadronic
content of the
photon in eikonal
models

R.Fletcher, T.Gaisser. F.Halzen, 1993

Conclusions

- Predictions at ILC vary according to which densities better describe the behaviour at low x
- Total cross-sections measurements in Collider mode would allow clean information on γγ cross-sections, reducing the errors due to modelling of diffractive components
- Even in regular mode, difference in the model predictions are measurable and can give insights into the soft or non perturbative region of QCD.