MAPS-based ECAL Option for ILC

ECFA 2006, Valencia, Spain

Konstantin Stefanov

On behalf of

J. Crooks, P. Dauncey, A.-M. Magnan, Y. Mikami, R. Turchetta, M. Tyndel, G. Villani, N. Watson, J. Wilson

- Introduction
- ***** ECAL with Monolithic Active Pixel Sensors (MAPS)
 - Requirements
 - Simulations and design
- Conclusions

Introduction

- Work done within the CALICE collaboration
- Baseline ECAL design:
 - Sampling calorimeter, alternating thick conversion layers (tungsten) and thin detector layers (silicon)
 - Around 2 m radius, 4 m long, 30 layers, total Si area including endcaps ≈2000 m² (for comparison CMS has 205 m² Si)
- Mechanical structure
 - Half of tungsten sheets embedded in carbon fiber structure
 - Other half of tungsten sandwiched between two PCBs each holding one layer of silicon detector wafers
 - Whole sandwich inserted into slots in carbon fiber structure
 - Sensitive silicon layers are on PCBs ~1.5m long × 30cm wide

Baseline ECAL with Silicon Diodes

- Sensor is silicon diode pads with size between 1.0 cm×1.0 cm and 0.5 cm×0.5 cm
- Sensor wafers attached by conductive glue to a large PCB
- Pad readout is digitized to ~14 bits by the Very Front End (VFE) ASIC, mounted on the other side of the PCB
- Total number of channels up to 80×10⁶
- Average dissipated power 1-4 μW/mm²

Requirements for the ECAL

- Excellent energy and spatial resolution needed for Particle Flow "tracking calorimeter"
- Nominal ILC beam timing parameters:
 - ✤ Beams collide during 1 ms-long bunch train, 337 ns inter-bunch spacing
 - ✤ Long "quiet" time (199 ms) between trains
- Physics event rate is small, pileup is low
- MAPS-based ECAL prototype being designed to cope with double the event rate and half the bunch spacing

MAPS-based ECAL Design

Features of the Monolithic Active Pixel Sensor (MAPS) -based calorimeter:

- **Binary readout:** hit or no hit per pixel (1-bit ADC)
- Pixels are small enough to ensure low probability of more than one particle passing through a pixel
- With ~100 particles/mm² in the shower core and 1% probability of double hit the pixel size should be ~40 $\mu m \times 40 \ \mu m$
 - Current design with 50 μm×50 μm pixels see Yoshi Mikami's talk
- Timestamps and hit pixel numbers stored in memory on sensor
- Information read out in between trains
- Total number of ECAL pixels around 8×10¹¹: Terapixel system
- Only monolithic designs can cope with that number of pixels hence MAPS

Diode pads and MAPS in ECAL (I)

Diode pads and MAPS in ECAL (II)

- Baseline mechanics design largely unaffected by use of MAPS instead of diode pads
- Advantages in the MAPS design:
 - High granularity could improve the position resolution and/or reduce the number of layers (thus cost) for the same resolution
 - More uniform thermal dissipation from larger area, although the overall power could be higher
 - * Less sensitivity to SEU, but higher SEU event rate digital logic is spread out
 - Cost saving (CMOS vs. high resistivity Si wafers and/or overall more compact detector system)
 - Simplified assembly (single sided PCB, no need for grounding substrate)

MAPS-based Simulations and Design

- Design of the first prototype started at the CMOS Sensor Design Group at RAL
- Four different pixel architectures included in the first prototype
- Targeting 0.18 µm CMOS imager process
- Goal of S/N > 15 to achieve noise pixel rate below 10⁻⁶
 - Data rate dominated by noise
 - Aim to reduce the electronics noise to the level of physics background (minijets and Bhabhas)
 - Faulty pixels masking and variable global threshold per chip included
 - Process non-uniformities contribute to threshold spread and are being studied
- Optimal pixel layout and topology essential to guarantee good S/N
- Power dissipation is a major issue

Pixel Design : Overview

Pixel Design : Charge Collection

- Charge collected mainly by diffusion: ineffective process, ≈250 ns collection time
 - Depletion under the diodes is only 2 μm
- Pixel is large and requires large collecting diodes
 - Large diodes add capacitance and noise
- N-well for PMOS transistors competes with the diodes and reduces the collected charge
 - Investigating triple P-well no charge loss
- Charge sharing between pixels should be minimal
 - Optimization of the diode location and size is necessary

Pixel Design: Simulations of Charge Collection (I)

- 21 MIP hits/pixel simulated on 5 μm pitch
- Using the symmetry the collected charge in the rest of the device is extrapolated

Pixel Design: Simulations of Charge Collection (II)

Digital Design for the First Prototype

• In this design each digital block serves 36 pixels from one row

* Many more pixels could be served, limited by the tracking

Adds about 10% dead area (less for more pixels served in the future designs)

- ✤ Narrow digital "strip" reduces power consumption
- Register for masking out noisy pixels
- Address and timestamp written in SRAM

Chip Layout

- MAPS chips could be ~2 cm×2 cm using standard process
 - Stitching could be considered if larger devices are needed
- Each sensor could be flip-chip bonded to a PCB

Conclusions

- MAPS-based ECAL could offer numerous advantages
- Design of the first generation "proof of principle" MAPS for CALICE ECAL is advancing well
- Two types of analogue pixel circuits considered
- Charge collection studies are very important for good S/N
 - Optimization of diode position and size for maximum signal and minimum crosstalk
 - Goal is S/N > 15 by design
- Power dissipation still high and needs to be addressed
- Chip submission most likely in April 2007