T.A.P.A.S. at Giga-Z

a Terrific Accuracy Prediction on Alpha Strong

Marc Winter (IReS/IPHC-Strasbourg)

- Introductory remarks :
 - \Rightarrow Why remeasuring $lpha_{
 m s}$?
- Achievements of A.D.L.O. :
 - ⇔ Precision achieved
- Precision forecasts at Giga-Z :
 - ⇔ Discussion on uncertainty reduction
- Summary

- \Rightarrow Sensitivity of Z parameters to $\alpha_{\rm s}(M_{\rm Z})$
- ⇔ Discussion on sources of uncertainty
- ⇔ Precision achievable in various scenarios

Reminder

Why (re)measuring $lpha_{ m s}(M_{ m Z})$?

- ⇒ Refine tests of non-Abelian structure of QCD
 - \Rightarrow Refine SM predictions to extract SM unknowns : e.g. m_t at $t\overline{t}$ threshold
 - \Rightarrow Refine SM predictions to study its limits : e.g. evolution of $\alpha_1, \alpha_2, \alpha_3 \rightarrow \text{GUT}$
 - Refine predictions of new theoretical models

Advantages of the measurement based on the Z-parameters :

- \Rightarrow Inclusive final state \rightarrow rigorous QCD handling (how rigorous?)
 - \Rightarrow Knowledge of SM free parameters (e.g. M_H) will improve at required accuracy
 - ⇒ Extended experience from LEP analyses → 2nd generation measurement at ILC

Advantages of Giga-Z :

- \Rightarrow 100 times more events than at LEP-1 \rightarrowtail 10 times smaller Δ_{stat} and > 3–5 times smaller Δ_{syst}
 - ⇔ Outstanding apparatus : accuracy and hermeticity

 $\label{eq:GCD} \begin{tabular}{ll} \begin{t$

$$\begin{split} \mathbb{R}_{l} &= \Gamma_{h}/\Gamma_{l} \rightarrow \text{QCD corr.} \sim 4 \,\% \\ \mathbb{P}_{Z} &= \Gamma_{Z}^{0} + \Gamma_{h}^{0} \cdot \delta_{\text{QCD}} \approx \Gamma_{Z}^{0} \cdot (1 + 0.7 \cdot \delta_{\text{QCD}}) \rightarrow \text{QCD corr.} \sim 2.8 \,\% \\ \mathbb{P}_{0}^{1} &= \frac{12\pi\Gamma_{l}^{2}}{M_{Z}^{2}\Gamma_{Z}^{2}} \approx \frac{12\pi\Gamma_{l}^{2}}{M_{Z}^{2}\Gamma_{Z}^{02}} \cdot \frac{1}{(1 + 0.7 \cdot \delta_{\text{QCD}})^{2}} \approx \sigma_{0}^{10} \cdot (1 - 1.4 \cdot \delta_{\text{QCD}}) \rightarrow \text{QCD corr.} \sim 5.5 - 6 \,\% \\ \mathbb{P}_{0}^{h} &= \frac{12\pi\Gamma_{l}\Gamma_{h}}{M_{Z}^{2}\Gamma_{Z}^{2}} \approx \frac{12\pi\Gamma_{l}\Gamma_{h}^{0}}{M_{Z}^{2}\Gamma_{Z}^{02}} \cdot \frac{1 + \delta_{\text{QCD}}}{(1 + 0.7 \cdot \delta_{\text{QCD}})^{2}} \approx \sigma_{0}^{h0} \cdot (1 - 0.4 \cdot \delta_{\text{QCD}}) \rightarrow \text{QCD corr.} \sim 1.5 \,\% \\ \\ \mathbb{R}_{l} : \Delta \alpha_{s}(M_{Z}) \approx 3.1 \cdot \Delta \mathbb{R}_{l}/\mathbb{R}_{l} \\ \sigma_{0}^{l} : \Delta \alpha_{s}(M_{Z}) \approx 2.2 \cdot \Delta \sigma_{0}^{l}/\sigma_{0}^{l} \\ \sigma_{0}^{h} : \Delta \alpha_{s}(M_{Z}) \approx 7.4 \cdot \Delta \sigma_{0}^{h}/\sigma_{0}^{h} \\ \Gamma_{Z} : \Delta \alpha_{s}(M_{Z}) \approx 4.4 \cdot \Delta \Gamma_{Z}/\Gamma_{Z} \end{split}$$

,

A.D.L.O. extracted the experimental values of R_1 , σ_0^l , σ_0^h and Γ_z essentially from multi-hadron, $\mu^+\mu^-$ and $\tau^+\tau^-$ final states

Measurement accuracies of different experiments differ substantially :

$rac{\Delta \epsilon_h}{\epsilon_h} \oplus rac{\Delta b g_h}{b g_h}$	$rac{\Delta \epsilon_{\mu}}{\epsilon_{\mu}} \oplus rac{\Delta b g_{\mu}}{b g_{\mu}}$	$\frac{\Delta \epsilon_{\tau}}{\epsilon_{\tau}} \oplus \frac{\Delta b g_{\tau}}{b g_{\tau}}$	$\frac{\Delta L_{syst}^{exp}}{L}$	$\frac{\Delta L_{syst}^{theo}}{L}$
0.04 – 0.10 %	0.09 – 0.31 %	0.18 – 0.65 %	0.033 – 0.09 %	0.054 %

Most accurate measurements :

- ⇔ Hadronic final state selection : L3 most accurate
 - ⇒ Lepton-pair final state selection : ALEPH most accurate
 - ⇒ Luminosity determination (Bhabha events) : OPAL most accurate

,

Syst. uncertainties of the quark-pair selection entering the hadronic x-section determination (1994 data)

source of uncertainty	relative uncertainty [%]	
Acceptance	0.021	
Selection cuts	0.030	
Trigger efficiency	0.012	
Non-resonant background	0.010	
Monte-Carlo statistics	0.004	
Total	0.040	

Some dominant acceptance uncertainty components :

- \Rightarrow Geometrical acceptance control (\gtrsim 0.5 % events inside forward aperture)
 - \Rightarrow Fragmentation uncertainties \rightarrow low charged multiplicity final states at shallow angle
 - ⇔ Radiative return : resonant spectrum modeling
- Major contributions to Δ_{syst} on selection cuts :
 - \Rightarrow Cut variations around nominal cut value \Rightarrow Background subtraction (accuracy of modeling)
- \Rightarrow Improvements provided by ILC :

better hermiticity, rad. return & QCD modeling (stat.), background control, higher stat. for cut variations, etc.

-5-

Syst. uncertainties of the $\mu^+\mu^-$ & $\tau^+\tau^-$ preselection entering the x-section determination (1994 data)

source of relative uncertainty [%]	$\mu^+\mu^-$	$\tau^+\tau^-$
TPC tracking	0.03	0.03
$cos heta^*$	0.01	0.01
ISR/FSR simulation	0.03	0.03
total acceptance	0.04	0.04
Monte-Carlo statistics	0.06	0.07

Main sources underlying systematic uncertainties :

- \Leftrightarrow tracking inefficiencies \rightarrowtail estimated from MC / data comparison
 - \Rightarrow mismeasured angles (prod. angle, acol.) \rightarrow TPC end-plates positions (toy MC to simul. the effect)
 - \Rightarrow ambiguities in $l^+l^-q\overline{q}$ final states (limited understanding of 4-fermion final states)
 - ⇒ important contribution from Monte-Carlo statistics

Syst. uncertainties of the $\mu^+\mu^-$ & selection entering the x-section determination (1994 data)

Dominant contributions :

- ⇒ Photon energy : adjust simulated photon energy of $\mu^+\mu^-\gamma$ events to observed distribution
- Radiative events : difference between cross-sections computed with tight and loose cuts
- ⇒ Important contribution from Monte-Carlo statistics

source	$\Delta\sigma/\sigma$ [%]
acceptance	0.04–0.05
momentum calibration	0.006
momentum resolution	0.005
photon energy	0.05
radiative events	0.05
muon identification	pprox 0.001
Monte-Carlo statistics	0.06
Τοται	0.09 (\sim 5 X Δ_{stat})

\Rightarrow Improvements provided by ILC :

better hermiticity, calorimetry and tracking, radiative events modeling (stat., less material),

4-lepton understanding, higher stat. for cut variations, etc.

 \cdots Similar remarks apply to $au^+ au^-$ selection

Potential of a virtual LEP detector combining quark-pair selection of L3, lepton-pair selection of ALEPH and luminosity determination of OPAL, running one year at Giga-Z

,

uncertainty	Δ_{syst} [%]	Δ_{stat} [%]
$\Delta q \overline{q}$	0.040	0.003
$\Delta \mu^+ \mu^-$	0.090	0.015
$\Delta \tau^+ \tau^-$	0.170	0.015
ΔL_{exp}	0.033	0.002
ΔL_{theo}	0.054	-

observable	relative uncertainty [%]	$\Delta \alpha_{\rm s}(M_{\rm Z})$
R_1	0.09	0.0027
Γ_{z}	0.04	< 0.002
σ_0^h	0.07	0.0055
σ_0^l	0.10	0.0022

Accuracy achievable on $\alpha_{
m s}(M_{
m Z})$: \pm 0.0013

 \Rightarrow to be compared to present accuracy : \pm 0.0027

Improvements on Fermion-Pair Selection Expected at ILC

IMPROVEMENTS ON QUARK-PAIR SELECTION :

- More hermetic detector
- Larger statistics :
 - → more accurate Monte-Carlo simulation
 - \rightarrowtail smaller systematic uncertainty coming from cut variations
- More realistic generators for signal selection and background determination

IMPROVEMENTS ON LEPTON-PAIR SELECTION :

- Better controlled tracking efficiency (larger stat., better track finding due to lighter and more hermetic detector)
- Improved simulation of ISR-FSR interference (direct study)
- Better understanding of radiative events (improved generators, reduced detector material, high resolution tracking & calorimetry)

3–5 times smaller experimental (& modeling) syst. uncertainties running one year at Giga-Z

$\Delta^{q\overline{q}}_{stat}$ [%]	$\Delta^{q\overline{q}}_{syst}$ [%]	$\Delta_{syst}^{l^+l^-}$ [%]	$\Delta_{stat}^{l^+l^-}$ [%]	$\Delta R_l/R_l$ [%]	$\Delta \alpha_{\rm s}(M_{\rm Z})$
0.003 0.003 0.003	0.04 0.013 0.009	0.08 0.02 0.015	0.011 0.011 0.011	0.09 0.03 0.02	0.0027 0.0008 0.0006
$\Delta_{syst}^{l^+l^-}$ [%]	$\Delta_{stat}^{l^+l^-}$ [%]	ΔL_{syst}^{exp} [%]	ΔL_{syst}^{theo} [%]	$\Delta \sigma_0^l/\sigma_0^l$ [%]	$\Delta \alpha_{\rm s}(M_{\rm Z})$
0.08 0.03 0.02	0.011 0.011 0.011	0.033 0.03 0.02	0.054 0.05 0.03	0.10 0.066 0.043	0.0022 0.0014
		0.02	0.05	0.043	0.0009
$\Delta_{stat}^{q\overline{q}}$ [%]	$\Delta^{q\overline{q}}_{syst}$ [%]	ΔL_{syst}^{exp} [%]	$\Delta L_{syst}^{theo} [\%]$	$\Delta \sigma_0^h / \sigma_0^h$ [%]	$\Delta \alpha_{\rm s}(M_{\rm Z})$

 \Rightarrow Total uncertainty of combined value (including Γ_z) : $\Delta \alpha_s(M_z)$ = 0.0007-0.0005

(depends on assumptions on Δ_{syst} reduction : factor 3 or 5)

SUMMARY

Precision on $\alpha_s(M_Z)$ can be significantly improved at Giga-Z w.r.t. LEP-1 (factor \sim 4–5) using the Z observables (R_1 , σ^l , σ^h and Γ_Z) $\rightarrow \Delta \alpha_s(M_Z) = 0.0007 - 0.0005$

Improvements originate from :

1) Statistics (\sim 100 times more events) :

- ⇒ 10 times less stat. uncertainty on sensitive observables
- ⇒ at least 3–5 times less syst. uncertainty on fermion-pair selection
- 2) Outstanding detector performances :
 - \Rightarrow material budget \Rightarrow tracking \Rightarrow calorimetry \Rightarrow hermeticity
- **3)** Steady improving theoretical calculations (H.O. corrections, SM input param.)
- 4) Steady improving signal and background generators (partly because of 1) and 2))

Improvements profit mainly to R_1 (luminosity determination expected to be limited by beamstrahlung and Γ_z limited to LEP-1 accuracy)

Study presented here should be repeated in more detail (MC, reconstruction, ...)