Accelerator parameter impact on top threshold mass

Stewart T. Boogert Royal Holloway, University of London

> Filimon Gournaris University College London

Talk outline

- Different machine parameter sets
 - Nominal, Low-P and Low-Q
 - Fitting of luminosity spectra
- Luminosity spectra
- Luminosity (beamstrahlung) spectrum extraction
- Top threshold simulation
 - Smearing with luminosity spectra
 - Fitting for m_t^{1s} and α_s
- Effect of beamstrahlung on top mass
 - statistical error
 - Possible systematic shifts
- Future work on beamstrahlung extraction
- Conclusions and summary

Accelerator parameters

- 5 proposed parameter sets reflecting different operating conditions of the ILC
 - All equivalent luminosity (apart from High-Lum)
 - Low-Q (low charge from Damping rings)
 - Large-Y (large vertical beam size)
 - Low-P (lower linac RF power)
 - High-L (high et possible luminosity)
- Luminosity kept same via changing IP beam sizes
 - Changes beamstrahlung
- Only consider Nominal, Low-Q and Low-P secnarios
 - 1, 0.5, 2 times beamstrahlung
- Simulated using Guinea-Pig
 - 5 runs, ~10⁶ collision events

	Nominal	Low-Q	Large-Y	Low-P	High-L
β_x	21.0	12	10	10	10
eta_y	0.4	0.2	0.4	0.2	0.2
σ_x	655	495	495	452	452
σ_y	5.7	8.1	8.1	3.8	3.5
σ_z	300	500	500	200	150

Parameterization and fits

- Spectra must be parameterized and fitted
 - Essential for beamstrahlung measurement
- Spectra fitted to convolution of beta function (beamstrahlung) and Gaussian (energy spread)
 - Beam spread added to bunches before collision

 $f(x;a_i,\sigma) \sim$ $(a_0\delta(1-x) + (1-a_0)x^{a_2}(1-x)^{a_3}) * g(x;\sigma)$

- Fit parameters for the 5 parameter sets
 - a_0 smaller for larger beamstrahlung
 - Divergent terms a₂, a₃ larger with increasing beamstrahlung

	Nominal	Low-Q	Large-Y	Low-P	$\mathbf{High} extsf{-L}$
a_0	0.560	0.653	0.759	0.535	0.547
a_2	15.326	35.026	12.54	7.561	6.171
a_3	-0.715	-0.800	-0.707	-0.632	-0.624
$\sigma_E \ [\text{GeV}]$	0.177	0.175	0.175	0.177	0.177
$\langle E \rangle$ [GeV]	173.67	174.66	174.10	171.64	171.04

Luminosity spectrum

- Centre of mass energy variation, three main sources
 - Accelerator energy spread
 - Typically ~0.1%
 - Beamstrahlung
 - Typically between 0.2% and 2%
 - Initial state radiation (ISR)
 - Calculable to high precision in QED
 - Complicates measurement of Beamstrahlung and accelerator energy spread
 - Calculated using PANDORA

Luminosity spectrum simulation

- Simulation
 - Accelerator simulation to define beam before collision
 - Distribution of particles in 6 dimensional phase space (position, angles & energy
 - Beamstrahlung input from
 - Guinea-Pig (collision dynamics simulation)
 - CIRCE (parameterization based on Guinea-Pig output)
 - Bhabha scattering based on BHWIDE, wide angle Bhabha scattering Monte Carlo
 - Luminosity spectrum format
 - Parametrization
 - Histogram (distribution)
 - Discrete events (macro particles)
- Problems
 - Interface between Guinea-Pig and Monte Carlo generators

Bhabha acolinearity

- Bhabha scattering to monitor dL/dE
 - $e^+e^- \rightarrow e^+e^-n(\gamma)$
 - High rate compared with top threshold rate
- Two approximate reconstruction methods
 - Only use angles of scattered electron and positron
 - Both based on single photon beamstrahlung
 - Frary-Miller

$$x = 1 - \frac{\theta_A}{2\sin\bar{\theta}}$$

– K. Moenig

$$x = \sqrt{\cot \frac{\theta_p}{2} \cot \frac{\theta_e}{2}}$$

Extraction of beamstrahlung spectrum

- Bhabha luminosity spectrum reconstruction performance
 - Reasonable given assumptions in x reconstruction
 - Definition of true luminosity spectrum problematic due to overlap of ISR and FSR in Bhabha scattering
 - Main differences between measured and true x at x~1
- Scatter plot of x_{recon} and x_{true}
 - Mainly diagonal contribution, degeneracy at large x
 - Mainly due to the single photon approximation
- Problem now
 - How to extract beamstrahlung and beam spread from the observable x
 - Two different methods being investigated
 - Unfolding
 - Fitting

Extraction of beamstrahlung spectrum

- Vary beamstrahlung parameters
 - a_i by 10%

11/8/06

- Generate new x distributions $x(a_i + \Delta a_i)$
- Assume that variation in x distribution is linear in beamstrahlung parameters

$$x_{j}(a_{0},a_{2},a_{3}) = x_{j}^{0} + \sum_{i} \frac{a_{i} - a_{i}^{0}}{\Delta a_{i}} (x_{j}^{i} - x_{j}^{0})$$

- Compare resulting x distribution to nominal fit values
 - Fit using histogram usual least squares

$$\chi^{2}(a_{0}, a_{2}, a_{3}) = \sum_{i} \frac{\left[x_{i}(a_{0}, a_{2}, a_{3}) - x_{i}(a_{0}^{0}, a_{2}^{0}, a_{3}^{0})\right]^{2}}{\sigma_{i}^{2}}$$

Extraction of beamstrahlung spectrum

	Low-Q	Nominal	Low-P
a_0	0.00090	0.00073	0.00067
a_2	0.05525	0.02290	0.01106
a_3	0.00094	0.00078	0.00072

	Low-Q	Nominal	Low-P
a_0	0.0	0.015	0.013
a_2	0.6371	0.3125	0.0
a_3	0.0167	0.0169	0.004

- Statistical error
 - Generate "data" x distribution from symmetric electron and positron beam parameters
 - Fit x distribution as previous slide
 - Statistical errors comparable with previous studies
- Systematic shifts
 - Fit Guinea-Pig data for each beam
 - Fit of x assumes symmetric beams
 - Systematic shifts in beamstrahlung parameters
- Use different luminosity spectrum measurements to extract top mass
 – <1-2 MeV

Top threshold simulation

- Top threshold simulated using Toppik
 - Hoang and Teubner
 - NNLO pNRQCD

- Two alternative methods are used to smear the threshold curve
 - Histogram (binned)

$$\sigma'(\sqrt{s}) = \int_{0}^{1} p(x) \sigma(x\sqrt{s}) dx$$

- Large number of bins required when including all effects
 - ISR : 0<x<1
 - Beamstrahlung : 0.75<x<1
 - Energy spread : 0.99<x<1.01
- Event sample (unbinned)
 - Large number of samples (N) of x distributed in a luminosity spectrum

$$\sigma'(\sqrt{s}) = \frac{1}{N} \sum_{i=1}^{N} \sigma(x_i \sqrt{s})$$

11/8/06

Stewart T. Boogert (Accelerator parameter impact on top threshold mass)

Extraction of top parameters

- Generate data with
 - 9 equidistant scan points
 - Range 346→354 GeV
 - 1 nb⁻¹ to 30 nb⁻¹ per point
 - Nominal, Low-P, Low-Q luminosity spectra
 - Linac energy spread 0.1%
- Fit cross section
 - Smeared with different luminosity spectra
 - Measured from Bhabha analysis
 - True luminosity spectrum from parameterization fit to Guineapig
 - Form usual χ² between "data" and "theory" cross section

Extraction of top parameters

11/8/06

Previous study

- Previous study from LCWS-05
 - Effect of beamstrahlung parameter effect on top mass
 - Reasonably low sensitivity
 - Given errors on beamstrahlung parameters systematic shifts ~1-2 MeV
- Pre-LCWS-05
 - Smeared top threshold with x_{recon}
 - Maximum systematic error due to beamstrhlung mis-reconstruction ~35 MeV for nominal machine parameters

11/8/06 Stewart T. Boogert (Accelerator parameter impact on top threshold mass)

14

Parameter effect on top mass statistical error

- Statistical error effected by shape of spectrum
- Impact of high beamstrahlung scenarios enhanced at low luminosity

Projected total top mass error

- Statistical error
 - Obtained directly from threshold fit
 - 100 to 15 MeV
- Theory error
 - 35 MeV from theoretical uncertainty in threshold cross section
- Absolute beam energy scale
 - Assumed energy precision of beam line diagnostics precision 1 part in 10⁴
- Luminosity spectrum
 - Indications beamstrahlung component can be well measured
 - K. Moenig & SB
 - Systematics studies ongoing

Summary

- Bhabha analysis still needs a great deal of work
 - Final state fermion deflection due to field of opposing bunch
 - Detector resolutions & systematic studies
 - Parameterizations with realistic 350 GeV Guinea-pig samples
 - Migrations of events into/out of detector acceptance
- Current status is parameters do not make much difference
 - Beamstrahlung is controllable at the few MeV level
 - Devil is in the detail (as above)
 - Any model dependent problems will be amplified with larger beamstrahlung
 - Difficult to simulate
 - Systematics bounded between 2 MeV and 60 MeV
 - Dependence on accelerator parameters not clear
- Existing simulations indicate a final top error including statistical, systematic, theory errors of
 - <100 MeV for modest integrated luminosity per scan point of 1 to 5 nb⁻¹