Heavy neutral MSSM *higgses* at the PLC - a comparison of two analyses

M. Krawczyk¹, <u>M. Spira²</u>, <u>P. Nieżurawski¹</u>, A. F. Żarnecki¹

¹Faculty of Physics, Warsaw University, Poland ²Paul-Scherrer-Institut, Switzerland

Introduction

From: CMS NOTE 2003/033 (the same results as in newer CMS CR 2004/058)

Two analyses with MSSM parameter set: $M_A = 300 \text{ GeV}$ $\tan \beta = 7, M_2 = \mu = 200 \text{ GeV}$

MKSZ M. Mühlleitner, M. Krämer, M. Spira, P. Zerwas, Phys. Lett. B 508 (2001) 311. $S/B \approx 35$ $(300 \pm 3 \text{ GeV})$

NŻK P. Nieżurawski, A.F. Żarnecki, M. Krawczyk, Acta Phys. Pol. B 37 (2006) 1187. $S/B \approx 2$ $(300 \pm 5 \text{ GeV}, \text{ only } \gamma\gamma \rightarrow b\bar{b}(g) \text{ background})$

MKSZ analysis overview

MKSZ analysis of $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}, \ \gamma\gamma \rightarrow b\bar{b}$ processes:

Compton spectrum

 $E_L = 1.29 \text{ eV} \Rightarrow \text{for } M_A = 300 \text{ GeV} \text{ optimal } E_e = 200 \text{ GeV}$

- NLO calculation for signal and background:
 - full resummation of Sudakov and non-Sudakov logarithms
 - NLO- α_s with the scale $\mu^2 = s_{\gamma\gamma}$
- Interference between signal and background taken into account
- NLO QCD corrections of the interference terms to quark final states including the resummation of the large (non-)Sudakov logarithms calculated
- 3-jet events defined by the Sterman–Weinberg criterion: Energy of the radiated gluon > 10% $\sqrt{s_{\gamma\gamma}}$ and the angles between all three final partons > 20°.

 $N_{jets} = 2$

• Angular cut only for b: $|\cos \theta_b| < 0.5$

Only events in the window $M_A \pm 3$ GeV taken into account

MKSZ: Results

Cross sections of $\gamma\gamma \to A, H \to b\bar{b}$ and $\gamma\gamma \to b\bar{b}$ processes

$\langle \sigma(\gamma\gamma \rightarrow b\bar{b}) \rangle$ [fb] $tg\beta = 7$ $\Delta = \pm 3 \text{ GeV}$ $|\cos\theta| < 0.5$ w/o SUS $M_{2}/\mu = 200/200$ 200/-200 GeV background -1 10 -2 10 650 200 250 300 350 400 450 500 550 600 700 M_{A} [GeV]

Average cross sections in the invariant mass window ± 3 GeV. $M_A = 300$ GeV, $\mu = 200$ GeV $\rightarrow S/B \approx 35$

Considered MSSM parameter sets

μ [GeV]	M_2 [GeV]	$A_{\widetilde{f}}$ [GeV]
200	200	<u> </u>
-200	200	0

Also the limit of vanishing SUSY-particle contributions considered.

Results for $M_A = 200-700$ GeV and for $\tan \beta = 7$

M. Krawczyk, M. Spira, P. Niezurawski, A. F. Żarnecki

6-10.11.2006

– p.4/20

Results for $M_A = 200-700 \text{ GeV}$

NŻK analysis overview

NŻK analysis of $\sigma(\gamma\gamma \rightarrow A, H \rightarrow b\bar{b})$ measurement:

- **•** TESLA-like $\gamma\gamma$ -spectra (V. Telnov simulations, COMPAZ parametrization) $E_L = 1.17 \text{ eV} \Rightarrow \text{ for } M_A = 300 \text{ GeV optimal } E_e = 210 \text{ GeV}$
- Beams crossing angle, primary vertex distribution
- A and H parameters from HDECAY.
 Generated in resonance approximation with PYTHIA.
 Parton shower → 3-jet events.
- NLO QCD background $\gamma\gamma \rightarrow Q\bar{Q}(g)$ (Q = c, b) with program by G. Jikia:
 - resummation of non-Sudakov logarithms up to 4-loop order
 - JADE jet definition
 - LO- $lpha_s$ with the scale $\mu^2 = (m_{Tb}^2 + m_{Tar b}^2)/2$
- Other backgrounds: $\gamma\gamma \to W^+W^-$, $\gamma\gamma \to q\bar{q}$ (q=u, d, s), $\gamma\gamma \to \tau^+\tau^-$
- Overlaying events $\gamma \gamma \rightarrow hadrons$: about 2 OE per bunch crossing
- b-tagging algorithm (package ZVTOP-B-HADRON-TAGGER by T. Kuhl)
- Detector simulation (SIMDET)
- Full optimization of cuts

Cuts optimized by minimizing:

$$\frac{\Delta\sigma(\gamma\gamma\to A, H\to b\bar{b})}{\sigma(\gamma\gamma\to A, H\to b\bar{b})} = \frac{\sqrt{\mu_S + \mu_E}}{\mu_S}$$

For example, for $M_A = 300 \text{ GeV}$:

Maximal value of $|\cos \theta_{jet}|$ over all jets in the event

All angular cuts

Detector mask Particles on Pythia level: $\cos \theta_{mask} \approx 0.99$

OE suppression Tracks & clusters: $\cos \theta_{TC} = 0.85$

 $\gamma \gamma
ightarrow Q ar{Q}(g)$ suppression Jets: $|\cos heta_{jet}|^{\max} = 0.65$

ILC-Valencia

NŻK: Reconstruction & Selection

Selection of $b\bar{b}$ events for $M_A = 300$ GeV:

- OE suppression: clusters & tracks with $|\cos \theta_i| > \cos \theta_{TC} = 0.85$ ignored
- $W_{rec} > 1.2 W_{\gamma\gamma}^{\min}$ <u>Jets: Durham algorithm</u>, $y_{cut} = 0.02$
- **9** $N_{jets} = 2, 3$
- for each jet: $|\cos \theta_{jet}| < 0.65$
- $|P_z|/E < 0.06$
- Rejection of W^+W^- events:
- for each jet: $M_{jet} < 65 \text{ GeV}$
- energy below θ_{TC} : $E_{TC} < 80 \text{ GeV}$
- for each jet: $N_{trk} \ge 4$
- *b*-tagging

Correction for crossing angle: jets boosted with $\beta = -\sin(\alpha_c/2)$

NŻK: higgs-tagging

higgs-tagging: a cut on the ratio of $\gamma\gamma \to A, H \to b\bar{b}$ to $\gamma\gamma$ \rightarrow $bar{b}(g),\,car{c}(g),qar{q}\,\,(q=u,d,s)$ events $\Rightarrow \varepsilon_h = 53\%$ $\varepsilon_{bb} = 47\%$ $\varepsilon_{cc} = 2.9\%$ $\varepsilon_{uds} = 0.5\%$ Without OE $\Rightarrow \varepsilon_h = 57\%$ $\varepsilon_{hh} = 52\%$ $\varepsilon_{cc} = 1.8\%$ $\varepsilon_{uds} = 0.1\%$

Tighter cuts are needed due to OE contribution

6-10.11.2006

NZK: $\gamma\gamma \rightarrow A \rightarrow bb$

 $W_{\rm corr} \equiv \sqrt{W_{rec}^2 + 2P_T(E + P_T)}$ Acta Phys. Pol. B34 177 2003, hep-ph/0208234 Gaussian fit from $\mu - 1.3\sigma$ to $\mu + 1.3\sigma$.

M. Krawczyk, M. Spira, P. Niezurawski, A. F. Żarnecki

6-10.11.2006

– p.9/20

 $\langle \rangle$

NŻK: $\gamma\gamma \to A, H \to b\bar{b}$

LO cross section for signal and interference term.

Interference with $\gamma \gamma \rightarrow b\bar{b}$ is less than 1% of the signal even after higher order corrections (M. M. Mühlleitner, hep-ph/0008127)

M. Krawczyk, M. Spira, P. Niezurawski, A. F. Żarnecki

- p.10/20

NŽK: $\gamma \gamma \rightarrow A, H \rightarrow bb$

Reconstructed events

NŻK: Precision at PLC

Precision of $\sigma(\gamma\gamma \to A, H \to b\bar{b})$ measurement

Results for $M_A = 300 \text{ GeV}$

Corrected invariant mass distributions. For 300 ± 5 GeV and with only $\gamma \gamma \rightarrow b\bar{b}(g)$ background: $S/B \approx 2$

Results for $M_A = 200-350 \text{ GeV}$

our previous results compared

NŻK: Precision at PLC

Precision of $\sigma(\gamma\gamma \to A, H \to b\bar{b})$ measurement

Considered four MSSM parameter sets:

Symbol	μ [GeV]	M_2 [GeV]	$A_{\widetilde{f}}$ [GeV]
I	200	200	1500
II.	-150	200	1500
Ш	-200	200	1500
IV	300	200	2450

and III – following M. Mühlleitner *et al.* with higher $A_{\tilde{f}}$ to have M_h above 114 GeV II – an intermediate scenario

IV – as in CMS NOTE 2003/033

Results for $M_A = 200-350 \text{ GeV}$

Results for $M_A = 200, 250, 300, 350 \text{ GeV}$ Four MSSM scenarios for $\tan \beta = 3-20$

Comparison: Setup

Only parton level analysis

- MSSM parameters: $M_{A} = 300 \text{ GeV}, \tan \beta = 7, \mu = M_{2} = 200 \text{ GeV}, A_{\tilde{f}} = 1500 \text{ GeV}, M_{\tilde{f}} = 1 \text{ TeV}$
- Flat, normalized luminosity spectrum: $\sqrt{s_{\gamma\gamma}} = 300 \pm 3 \text{ GeV}$
- Angular cut for both quarks: $|\cos \theta_i| < 0.5$ where $i = b, \bar{b}$
- JADE jet definition with $y_{cut} = 0.01$

Comparison: Results

Results for $\gamma\gamma \rightarrow b\bar{b}$ background (with JADE):

With angular cut for both quarks 2-jet and 3-jet parts are of the same order.
 → N_{jets} = 2, 3.
 With cut on one quark the 3-jet part is greater by more than order of magnitude.

Both approaches agree within 5% for each event class: 2-jet, 3-jet, $J_z = 0$, $|J_z| = 2$. The full resummation of Sudakov and non-Sudakov logarithms does not modify the 2-jet numbers too much compared to the 4-loop expansion of the non-Sudakov logarithms.

Results for $\gamma \gamma \rightarrow A, H \rightarrow b\bar{b}$ signal (with JADE):

Both approaches agree within 5% for total cross section, and within 30% for 2-jet and 3-jet classes separately.

Conclusions

Final conclusions of our comparison:

If JADE jet definition is used and 2- and 3-jet events are accepted, then the difference is mainly due to different luminosity spectra:
 (L₀/L) used by NŻK = 94% of (L₀/L) used by MKSZ
 (L₂/L) used by NŻK = 5.5 of (L₂/L) used by MKSZ
 ⇒ NŻK obtain 2 times lager bb background
 After rescaling NŻK obtain S/B around 20% lower than MKSZ.

Sterman–Weinberg jet definition leads to much higher rate of 2-jet events for signal than for background.
⇒ 2 times higher S/B ratio for 2-jet events in comparison to results obtained with JADE jet definition

More detailed description: Proceedings of LCWS2006, Bangalore.

ILC-Valenci

Backup Slides

Backup Slides

Introduction

LHC wedge

From: CMS NOTE 2003/033 (the same results as in newer CMS CR 2004/058) We consider four MSSM parameter sets:

Symbol	μ [GeV]	M_2 [GeV]	$A_{\widetilde{f}}$ [GeV]
	200	200	1500
1	-150	200	1500
111	-200	200	1500
IV	300	200	2450

and III – following M. Mühlleitner *et al.* with higher $A_{\tilde{f}}$ to have M_h above 114 GeV II – an intermediate scenario

IV - as in CMS NOTE 2003/033

Crab-wise crossing of beams

 $\alpha_c = 34 \text{ mrad}$ Primary vertex distribution + $\gamma \gamma \rightarrow hadrons \text{ OE}$ = possible flavour mistagging

 $\gamma\gamma \to A, H \to bb$

LO cross section for signal and interference term.

Interference with $\gamma \gamma \rightarrow b\bar{b}$ is less than 1% of the signal even after higher order corrections (M. M. Mühlleitner, hep-ph/0008127)

M. Krawczyk, M. Spira, P. Niezurawski, A. F. Żarnecki

6-10.11.2006

 $\gamma\gamma \to A, H \to bb$

Reconstructed events

 $\gamma\gamma \to A, H \to bb$

Reconstructed events

 $M_H - M_A \approx 6.8 \text{ GeV}$

M. Krawczyk, M. Spira, P. Niezurawski, A. F. Żarnecki

6-10.11.2006

$M_A = 300 \text{ GeV}$

Without OE, without $\gamma \gamma \rightarrow W^+ W^-$

6-10.11.2006

$M_A = 300 \text{ GeV}$

With OE, without $\gamma \gamma \rightarrow W^+ W^-$

Precision & Significance

$\Delta\sigma(\gamma\gamma \to A, H \to b\bar{b})/\sigma(\gamma\gamma \to A, H \to b\bar{b})$

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{\mu_S + \mu_B}}{\mu_S}$$

Significance for $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}$

$$\delta = \frac{\mu_S}{\sqrt{\mu_B}} \pm \sqrt{1 + \frac{\mu_S}{\mu_B}}$$

Arrow – lower limit at LHC

Precision & Significance

$\Delta\sigma(\gamma\gamma \to A, H \to b\bar{b})/\sigma(\gamma\gamma \to A, H \to b\bar{b})$

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{\mu_S + \mu_B}}{\mu_S}$$

Significance for $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}$

$$\delta = \frac{\mu_S}{\sqrt{\mu_B}} \pm \sqrt{1 + \frac{\mu_S}{\mu_B}}$$

Arrow – lower limit at LHC