

The field cage for a Large TPC-Prototype

DESY FLC TPC Group, Peter Schade

The TPC field cage

- Design, develop and build a field cage for a "Large TPC-Prototype" (LP) to be used for studies and development work towards a TPC at the ILC
- Eudet-funded project
 - $\,\hookrightarrow\,$ Field cage will be available as infrastructure for studies with different endplates
- Size and boundary conditions of the field cage are defined through PCMAG
 - \hookrightarrow Length: $60\,cm$, outer diameter: $80\,cm$
 - \hookrightarrow "Large" diameter allows development of large surface readout structures
- $\circ\,$ Field cage should be lightweight, stable and flexible $\rightarrow\,$ structure will be made of composite materials
- $\circ~$ Field cage available until middle of 2007

Superconducting Magnet PCMAG

Preliminary field cage construction plans

Status field cage mechanics

- Ongoing negotiations with industry concerning construction of the field cage
 - $\, \hookrightarrow \, \, \text{First acceptable cost offer} \,$
 - \hookrightarrow Construction details are under discussion (materials, accuracy, ...)

To be optimized:

- Thickness of different layers of the wall
- $\,\hookrightarrow\,$ Mechanical calculations on the way
- Materials of anode/cathode inlays (G10 at cathode, Aluminum at anode)
- $\circ\,$ Cathode and anode interfaces have to be defined
- Final design until middle of January 07

Status electrostatic layout

- High voltage:
 - $\hookrightarrow\,$ Drift fields of up to $300\,V/cm \Rightarrow 21\,kV$ have to be applied at the cathode
 - → Kapton foil at the inside and glass fibre layers will provide needed dielectric strength
 - $\, \hookrightarrow \, \, HV \, \, \text{stability tests} \,$

 \hookrightarrow Electrostatic calculations to find the optimal field strip design

 $\, \hookrightarrow \, \text{Aim:} \,$

- make the intrinsic field deviations as small as possible
- \star make an estimation of final \vec{E} -field quality

Electrostatic field calculations

- Model for calculation:
- $\begin{array}{l} \hookrightarrow \mbox{ Rotational symmetry} \\ \Rightarrow \mbox{ 2-dim model} \end{array}$
- \hookrightarrow Size: $40 \,\mathrm{cm} \times 60 \,\mathrm{cm}$
- \hookrightarrow Fine Mesh: $5 \cdot 10^6$ cells 10-20 along strip

Wall of Chamber / GND

Fieldstrips

- To estimate the systematics of different strip geometries, electron drift is simulated
 - $\, \hookrightarrow \, \mathsf{Radial} \, \, \mathsf{displacement}$
 - $\,\hookrightarrow\,$ Loss of sensitive volume at the corners

mm

displace

adial

0.7

0.6

0.5

0.4

0.3

- $\circ 2.3\,\mathrm{mm}$ wide strips with $0.5\,\mathrm{mm}$ gaps (smallest possible gap size)
- Deviations: $\approx 0.3 \%$ 0

• Field quality not sufficient

400

500

z/mm

Optimized design with mirror strips

Layout of the field strips

- $\circ~2.4\,m\times0.6\,m$ flexible circuit board with field strips needed
- SMD-Resistor chain to devide the potential inside the chamber connections through the foil by vias
- $\circ~$ Negotiations with industry are ongoing \rightarrow test foils are ordered

Layout of the field strips

- $\circ~2.4\,m\times0.6\,m$ flexible circuit board with field strips needed
- SMD-Resistor chain to devide the potential inside the chamber connections through the foil by vias
- $\circ~$ Negotiations with industry are ongoing \rightarrow test foils are ordered

- SMD-Resistors between neighbouring strips will have $M\Omega$ resitivity
- Tolerance in resitivity: $\pm 0.5 \%$
- Modified potentials on the field strips calculated for randomly generated resistivities
- Deviations of order $\pm 0.1\%$ 0

Non-perfect resistors

Outlook

- Final design of field cage in January 07, construction until June 07
- Field cage available at DESY in August 2007 seems feasible
- Mechanics:
 - $\,\hookrightarrow\,$ Construction of field cage in collaboration with industry
 - \hookrightarrow Lightweight barrel made of composite materials
 - \hookrightarrow Readout surface up to $0.44\,m^2$ at $60\,cm$ drift length
- Electrostatics:
 - \hookrightarrow Field strips and mirror strips with $2.8\,\mathrm{mm}$ pitch ($2.3\,\mathrm{mm}$ strips, $0.5\,\mathrm{mm}$ gaps)
 - $\,\hookrightarrow\,$ Two parallel SMD-resistor chains inside the chamber
 - \hookrightarrow $ec{E}$ -field inhomogeneities $\leq 1\,\%$ within few cm distance to the walls
 - $\hookrightarrow\,$ Drift fields up to $300\,V/cm$ in the chamber