4th Concept Detector Performance

Tracking Calorimetry Physics Studies

On behalf of 4th Software Group E. Cavallo D. Barbareschi V. Di Benedetto A. Mazzacane G. Tassielli G. Terracciano

4th Concept Software Framework: ILCroot

- Unique framework for generation, simulation, reconstruction and analysis
- CERN architecture (Aliroot)
- Uses ROOT as infrastructure
 - All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)
 - Extremely large community of users/developers
- TGenerator for events generation
- Virtual Geometry Modeler (VGM) for geometry
- Virtual Montecarlo (VMC) for simulation
- Six MDC have proven robustness, reliability and portability

November 9th, 2006

Detector Simulation

- Full simulation will be in place for the DCR final results
- VXD, TPC and DREAM implemented in the simuation
- Hits using G3, G4 or Fluka (depends on the study)
- SDigits + Digits + Pattern Recognition
- Full Parallel Kalman Filter for track reconstruction (includes kinks and V0)
- PID (no muons)

Detector Simulation (2)

- Studies for Valencia have:
 - SDigits + Digits + Pattern Recognition or DREAM
 - Gaussian smearing for VXD and TPC

Tracking Studies

November 9th, 2006

VXD Event Display

7

VXD Simulation

- Gaussian smearing of hits (5μm x 6 μm)
- Barrel only
- Pattern recognition through Parallel Kalman Filter

4th Concept TPC

November 9th,

TPC Simulation

- Gas: Ar-CF4: 97-3
- Alice's vessel scaled down
 - Inner Radius: 0.20 m Outer Radius: 1.50 m Half Length : 1.50 m
 - Active readout region: 25 cm 137cm (145 cm for DCR)
- All passive material included in geometry
 - Cage
 - Endcaps
 - Electronics and cables
 - Services
 - Support
- Readout
 - Pad Inner: Width 0.23 cm
 Pad Outer1: Width 0.34 cm
 Pad Outer2: Width 0.34 cm
 Length 0.57 cm
 Length 0.85 cm
 - 5 MuMega rows
 - 512 pixels with 55 μ m x 55 μ m
 - Cluster statistics included (30/cm)
 - $\varepsilon = 90\%$ /electron

Material Budget (small radii)

Material Budget (overall)

Material Budget ($\eta=0$)

Beam Pipe: 0.18% X/X_o

• VXD:

Detector & support: 0.8% X/X_o

Outer shield: 0.16% X/X_o

• TPC

- Gas: 1.3% (along 1.2 m)
- Vessel:
 - Inner wall + cage: 0.29% X/X_o
 - Outer wall: 1.2% X/X_o
 - Endcaps (wires, pads, electronics & services included): 54% X/X_o

Tracking Resolution (perfect read-out)

Full Kalman Filter with 150 measurements
TPC alone: σ(1/p_t) = 1 x 10⁻⁴
TPC + VXD: σ(1/p_t) = 0.5 x 10⁻⁴
Beam constraint makes no further improvements

TPC Pads Simulation (fast)

Sigma of cluster COG position determination

• σ_t of cluster center (not systematic (threshold)effect):

$$\sigma_{tCOG} = \sqrt{\frac{\sigma_L^2(z_{max} - z)}{N_{ch}}}G_g + \frac{tan(\alpha)^2 l_{pad}^2 G_{Landau}(N_{prim})}{12N_{chprim}} + \sigma_{noise}^2$$
(7)

• σ_p of cluster center (not systematic (threshold) effect):

$$\sigma_{pCOG} = \sqrt{\frac{\sigma_T^2(z_{max} - z)}{N_{ch}}}G_g + \frac{\tan(\beta)^2 l_{pad}^2 G_{Landau}(N_{prim})}{12N_{chprim}} + \sigma_{noise}^2 \quad (8)$$

 N_{ch} - total number of electrons in cluster N_{chprim} - number of primary electrons in cluster G_g - gas gain fluctuation factor G_{Landau} - secondary ionization fluctuation factor

November

50 µm

Gas Related Uncertainties

- In Ar-CF4 with 4th Concept Geometry:
- σ = 200-250 μm/electron
- Integrating over 1 cm corresponds to: $\sigma = 36-45$ μm

 Useless to read out with an uncertainty much less than that

 MuMegas in the 4th Concept correspond to about 3 µm in 1 cm (average 27 points/cm@55
 Noven (12) Valencia 2006 - C. Gatto

TPC space resolution (pads readout)

Includes 50µm constant term

Plots are for 10 muons 0.5-200 GeV and |tan(θ)|<0.9

Tracking Resolution (pads read-out)

- Using 10 muons 0.5-200 GeV and |tan(θ)|<0.9
- Average pads resolution: 40-70 μm ⊕ 50 μm (gas statistis ⊕ pad resolution ⊕ const. term)
- Full Kalman Filter with 150 measurements
- TPC alone: $\sigma(1/p_t) = 2 \times 10^{-4}$
- TPC + VXD:
 - $\sigma(1/p_t) = 0.9 \times 10^{-4}$
 - $\sigma(d) = 3.3 \,\mu m$
 - σ(z) = 7.2 μm
- Efficiency refers to tracks with at least 30 hits in the TPC (r_{min} ~ 40 cm or ~0.38 Gev)

TPC Total Resolution

- outer pads
- intermediate pads

inner pads
 black - μMega 1
 layer
 (just a diffusion for one electron)

Includes 50µm constant term (pds only)

Plots are for 10 muons 0.5-200 GeV and |tan(θ)|<0.9

Tracking Resolution (TPC pads + MuMegas)

Tracking Resolution (pads + MuMegas read-out)

- Using 10 muons/evt 0.5-200 GeV and |tan(θ)|<0.9
- Full Kalman Filter with 150 + 5 x ~90 measurements
- TPC + VXD:
 - $\sigma(1/p_t) = 0.6 \times 10^{-4}$
 - σ(d) = 3.1 μm
 - σ(z) = 8.0 μm
- Efficiency refers to tracks with at least 30 hits in the TPC (r_{min} ~ 40 cm or ~ 0.38 Gev)
 Efficiency for low Pt tracks improves noticebly

Calorimetry Studies

November 9th, 2006

DREAM Simulation

- 1.5m Cu + scintillating fibers + Cerenkov fibers
- ~ 10 λ
- Fully projective geometry
- ~1.5° aperture angle
- Azimuth coverage down to 3.4°
- Barrel: 13924 cells (236 slices containing 59 cells)
- Endcaps: 3164 cells arranged in 27 rings

DREAM Cells

Bottom view of single cell

Bottom cell size: ~2 cm

Top cell size: ~ 4 cm

Number of fibers inside each cell: 1980 equally subdivided between Scintillating and Cerenkov Fiber stepping ~2 mm Prospective view of clipped cell

Cell length: 150 cm (but DoD has 100cm)

Calibration Algorithm

• $\eta_s * S(\eta_c - 1) - \eta_c * C(\eta_s - 1)$

 η_c - η_s

November 9th, 2006

Valencia 2006 - C. Gatto

Reconstructed vs Beam Energy

Energy linearity 220 ions data AL DREAM energy Single rec parteriery 200 $\eta_c \& \eta_s$ Independent on Energy Fit AI DREAM energy 0.01186/4 pО 0.0291 ± 1.149 1.002 ± 0.01919 141 Pt Single rec pait en e 0.00525 р0 р1 -0.1261 ± 1.199 0.9983 ± 0.02001 Pattern Recognition 40 20 00 20 40 60 80 160 180 200 100 120 140

Beam Energy (GeV)

Total Energy

Resolution for hadrons

Physics Studies

November 9th, 2006

e+e⁻ -> t<u>t</u> -> 6 jets

34

e⁺e⁻ -> tt -> 6 jets Pads only vs Pads + µMegas Tracking efficiency: 85% -> 90% Momentum & space resolution barely affected • TPC + VXD resolution: • $\sigma(1/p_t)$ Totally dominated by MS • $\sigma(d) = 8 \mu m$ • $\sigma(z) = 11.0 \,\mu m$

e⁺e⁻ -> Z^oH^o -> μ⁺μ⁻X

e+e⁻ -> Ζ^oH^o -> μ+μ⁻X

- Pads only vs Pads+MuMegas
- Simple analysis
- Perfect muon-ID (no MUD at present)
- Cut |P| > 20 GeV
- Loose DCA cuts:
 - η < 50 μm
 - ξ < 40 μm
- Requires no kink in track reconstruction
- Multiple entries per event

Recoil Mass (500 fb)

42

$e^+e^- -> Z^0H^0 -> I^+I^-bb$

- Very preliminary results
- No Jet finder
- Only pattern recognition in the DREAM

Conclusions

- 4th Concept baseline detector implemented in ILCroot
- Full simulation almost in place for DCR (about another month)
- Performance is good:

Calorimetry: $\sigma_{\rm E}/{\rm E} = 36\%/{\rm VE}$

Tracking:

 $\sigma(1/P_t) = 0.6 \times 10^{-4}$ $\sigma(d) = 3 \ \mu m \ (8 \ \mu m \ for \ tt->6jets)$ $\sigma(z) = 8 \ \mu m \ (11 \ \mu m \ for \ tt->6jets)$

Event production (generation + reconstruction) in progress

- Very slow with Fluka: ~1-3 hr/evt
- Parametric implementation of the code
- Detector optimization will start next year
- EMCAL and Muon Spectrometer Simulation delayed

Backup slides

November 9th, 2006

Present Status: VXD+TPC+DREAM

Dream Performance (pions)

47

Results from DREAM simulation (V. Di Benedetto)

- Scintillation and Cerenkov processes well simulated
- Easily switch from Cu to W (however, need to change calibration values of η_s and η_c)
- Pattern recognition in place (nearby cells).
- Hadronic showers appear to reproduce the compensation effect seen in the test module (Fluka)
- PiD ($e/\pi/\mu$) results are very promising

LCIO vs MONARC

Present Status: VXD+TPC+DREAM

