A FORTRAN code for $\gamma \gamma \rightarrow \mathrm{ZZ}$ in SM and MSSM G.J. Gounaris

Based on the publications:

- Th. Diakonidis, GJG, J. Layssac, hep-ph/0610085
- GJG, P. Porfyriadis, F.M. Renard, Eur. Phys. J. C19:57 (2001), hep-ph/0010006.
- GJG, P. Porfyriadis, J. Layssac, F.M. Renard, Eur. Phys. J. C13:79(2000), hep-ph/9909243.
-The whole code is contained in the fille gamgamZZ.tar.gz downloaded from
http://users.auth.gr/~gounaris/FORTRANcodes/

It contains 4 sub-codes called, sm1, mssm1, sm2 and mssm2.
A Readme.dat fille explains everything.
Real SM and MSSM parameters are assumed.

The $\gamma\left(\lambda_{1}\right) \gamma\left(\lambda_{2}\right) \rightarrow \mathbf{Z}\left(\lambda_{3}\right) \mathbf{Z}\left(\boldsymbol{\lambda}_{4}\right) \quad$ helicity amplitudes

Helicity amplitudes $\Rightarrow F_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}\left(\beta_{Z}, t, u\right) \quad, \quad s=s_{\gamma}=\frac{4 m_{Z}^{2}}{1-\beta_{Z}^{2}}$
Bose $\Rightarrow F_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}\left(\beta_{Z}, t, u\right)=F_{\lambda_{2} \lambda_{1} \lambda_{4} \lambda_{3}}\left(\beta_{Z}, t, u\right)(-1)^{\lambda_{3}-\lambda_{4}}$

$$
\begin{aligned}
& F_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}\left(\beta_{Z}, t, u\right)=F_{\lambda_{2} \lambda_{1} \lambda_{3} \lambda_{4}}\left(\beta_{Z}, u, t\right)(-1)^{\lambda_{3}-\lambda_{4}} \\
& F_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}\left(\beta_{Z}, t, u\right)=F_{\lambda_{1} \lambda_{2} \lambda_{4} \lambda_{3}}\left(\beta_{Z}, u, t\right)
\end{aligned}
$$

$\mathrm{CP} \Rightarrow F_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}\left(\beta_{Z}, t, u\right)=F_{-\lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4}}\left(\beta_{Z}, t, u\right)(-1)^{\lambda_{3}-\lambda_{4}}$

Thus, the 10 independent helicity amplitudes are:

$$
\begin{aligned}
& F_{++++}, F_{+-+-}, F_{+-00} \\
& F_{+++-}, F_{+-++}, F_{++00} \\
& F_{+++0}, F_{++--}, F_{++-0} \\
& F_{+-+0}
\end{aligned}
$$

Codes sm1 and mssm1 calculate these amplitudes for SM and MSSM respectively.

The three magenta amplitudes respect the asymptotic Helicity Conservation (HC) rule

$$
\lambda_{1}+\lambda_{2}=\lambda_{3}+\lambda_{4}
$$

They are the largest ones, and mostly imaginary.

The rest of these amplitudes violate $\mathbf{H C}$ and they are very small above 200 GeV .

HC: Renard + G, hep-ph/0501046, hep-ph/0604041

Example...

Imaginary and real parts of the helicity amplitudes in SM at $\mathbf{9 0}^{\mathbf{0}}$.

HC respecting amplitudes mostly imaginary. HC violating amplitudes very small at high (\mathbf{s}, t)

Cross sections for unpolarized Z's, given by the codes sm2 and mssm2 for SM and MSSM respectively.
These are:

$$
\begin{aligned}
& \frac{d \sigma_{0}(\gamma \gamma \rightarrow Z Z)}{d \cos \theta}=\left(\frac{\beta_{Z}}{128 \pi \hat{s}}\right) \sum_{\lambda_{3} \lambda_{4}}\left[\left|F_{++\lambda_{3} \lambda_{4}}\right|^{2}+\left|F_{+-\lambda_{3} \lambda_{4}}\right|^{2}\right], \\
& \frac{d \sigma_{22}(\gamma \gamma \rightarrow Z Z)}{d \cos \theta}=\left(\frac{\beta_{Z}}{128 \pi \hat{s}}\right) \sum_{\lambda_{3} \lambda_{4}}\left[\left|F_{++\lambda_{3} \lambda_{4}}\right|^{2}-\left|F_{+-\lambda_{3} \lambda_{4}}\right|^{2}\right], \\
& \frac{d \sigma_{3}(\gamma \gamma \rightarrow Z Z)}{d \cos \theta}=\left(\frac{-\beta_{Z}}{64 \pi \hat{s}}\right) \sum_{\lambda_{3} \lambda_{4}} \operatorname{Re}\left[F_{++\lambda_{3} \lambda_{4}} F_{-+\lambda_{3} \lambda_{4}}^{*}\right], \\
& \frac{d \sigma_{33}(\gamma \gamma \rightarrow Z Z)}{d \cos \theta}=\left(\frac{\beta_{Z}}{128 \pi \hat{s}}\right) \sum_{\lambda_{3} \lambda_{4}} \operatorname{Re}\left[F_{+-\lambda_{3} \lambda_{4}} F_{-+\lambda_{3} \lambda_{4}}^{*}\right], \\
& \frac{d \sigma_{33}^{\prime}(\gamma \gamma \rightarrow Z Z)}{d \cos \theta}=\left(\frac{\beta_{Z}}{128 \pi \hat{s}}\right) \sum_{\lambda_{3} \lambda_{4}} \operatorname{Re}\left[F_{++\lambda_{3} \lambda_{4}} F_{--\lambda_{3} \lambda_{4}}^{*}\right], \\
& \frac{d \sigma_{23}(\gamma \gamma \rightarrow Z Z)}{d \cos \theta}=\left(\frac{\beta_{Z}}{64 \pi \hat{s}}\right) \sum_{\lambda_{3} \lambda_{4}} \operatorname{Im}\left[F_{++\lambda_{3} \lambda_{4}} F_{+-\lambda_{3} \lambda_{4}}^{*}\right]
\end{aligned}
$$

Cross sections for polarized ${ }^{ \pm}$beams, integrated over the azimuthal angles in SM

$$
\left\{\begin{array}{l}
\bar{\sigma}_{j} \equiv \sigma_{j} \\
\tau=\frac{S_{\gamma \gamma}}{4 E_{e}^{2}} \\
x_{0}=\frac{4 E_{e} \omega_{\text {lazer }}}{m_{e}^{2}} \\
E_{e}=\text { energy of } \\
\text { the e }
\end{array}\right.
$$

Cross sections for polarized $\mathrm{e}^{ \pm}$beams, integrated over the azimuthal angles in SM

Effect stronger for smaller \mathbf{x}_{0}.

σ_{0} cross sections in MSSM and SM

SPS1a'

$\mathrm{m}_{0}=70 \mathrm{GeV}$, $\mathrm{m}_{1 / 2}=250 \mathrm{GeV}$, $\mathrm{A}_{0}=-300 \mathrm{GeV}$, $\tan \beta=10, \mu>0$

Here H^{0} lies at 424 GeV , but it couples so weakly, and its width is so large, that no peak is visible in σ_{0}, (integrated over the indicated angular range).
> "light higgs" is an MSSM model from hep-ph/0609079, where H^{0} is below the ZZ threshold.

σ_{22} cross sections in MSSM and SM

Summary

The purpose of this talk is to inform the community that a code called gamgamZZ.tar.gz exists in

http://users.auth.gr/~gounaris/FORTRANcodes/

which calculates:

- All helicity amplitudes for $\gamma\left(\lambda_{1}\right) \gamma\left(\lambda_{2}\right) \rightarrow \mathbf{Z}\left(\lambda_{3}\right) \mathbf{Z}\left(\lambda_{4}\right)$.

This should be useful in cases where Z-polarization effects must be studied.

- All cross sections where Z-polarizations are summed over. These give all physical observables, in case Z-polarization is not looked at.
-MSSM parameters are assumed real.
-Please send me suggestions for improvements...

