

A Pixel Telescope for Detector R&D for an ILC

• Introduction: EUDET

- Pixel Telescope
 - Sensors
 - Readout
 - Simulations
 - Mechanics
 - Summary

Tobias Haas DESY 7 November 2006

Build INFRASTRUCTURES for LC R&D

7 November 2006

Tobias Haas: Pixel Telescope

Testbeam Infrastructure (JRA1)

- Provide a large bore high field magnet
- Provide beam telescope with:
 - Very high precision (< 3µm precision even at lower energies)
 - High readout speed (frame rate > 1 kHz)
 - Easy to use (well defined/described interfaces)
 - Wide range of conditions for devices under test (cooling, positioning, magnetic field
- Major uses
 - Pixel sensors
 - Large volume tracking devices
- Initial setup @ DESY
 - < 6GeV/c electrons</p>
- Transportable
 - Hadron beams at FNAL or SLAC

EUDET JRA1 Institutes

- EUDET comprises 21 partners and 9 associates from 3 continents
- JRA1:
 - Bristol (UK)
 - CNRS-IRES Strasbourg, CEA (France)
 - DESY, MPI Munich, Bonn, Mannheim (Germany)
 - Genève, CERN (Switzerland)
 - INFN (Italy)
 - Warsaw (Poland)

PCMAG

KEK, DESY

• Large bore

- D ~ 86 cm
- L ~ 100 cm
- B ≤ 1.2 T
- Superconducting
 - B ≤ 1.2 T
- Thin
 - 0.2 X₀
- Field map

|**B**

beam

7 November 2006

Tobias Haas: Pixel Telescope

Beam Telescope

Phase 1 "Demonstrator"

- First test facility available quickly
- Established pixel technology with analog readout
- Phase 2 "Final Telescope"
 - Fully digital readout with integrated CDS and sparsification
 - Ready end 2008

Reference Plane Sensors

Demonstrator: Mimo*3M

- Developed for Star micro vertex detector upgrade
- AMS 0.35 OPTO process
- 4 sub-arrays with 64x256 pixels:
 - 30 x 30 μ m² pitch, active are 7.7 x 7.7 mm²
 - Frame readout: 1.6 ms
 - First wafers delivered, currently being tested
 - Final Telescope: Mimosa16++
 - Fast column-parallel architecture
 - Integrated CDS and discriminator
 - Active area 2 4 cm²

R/O: <u>EUDET Data Reduction Board</u>

- Mother board:
 - Online calculation of pixel pedestal noise
 - Based on ALTERA Cyclone II FPGA
- 1 Analog mezzanine card:
 - 4 independent signal processing digitizing stages
 - 1 Digital mezzanine card:
 - Detector control and status
 - USB 2 link
- Adoptable to a large range of different sensors
- Zero-suppressed and Full frame readout available
- Boards are available and are currently under test

7 November 2006

DUT and DAQ Integration

• Trigger Logic Unit:

- Readout of DUT and telescope independent
- Integrate via trigger, busy, reset
- DUT readout provided by users

Genève

7 November 2006

Telescope Precision: Simulations

- Analytic method for track fitting has been developed and verified with GEANT4
- Various two-arm configurations [mm] have been investigated

• One HiRes plane ($\sigma < 1.5 \mu m$) is needed close (d < 5mm) to DUT

20

StdRes

15

StdRes

HiRes

DUT

20

>| |< 2–5

StdRes

20

StdRes

StdRes

- Optimum telescope configuration depends strongly on beam and DUT parameters
- At DESY (6 GeV): 6 planes, 1 HiRes plane and two long arms

Telescope Mechanics

- Boxes 1 & 3: Reference planes
 - Movable along Z
 - Temperature controlled
- Box 2: DUT
 - Cooling (> -40° C)
 - Walls to Boxes 1&2 removable

- DUT Actuator:
 - External XYΦ-Table with "long arm"
 - Accuracy: < 10µm, Repeatable: < 0.5µm/axis</p>
 - Initial mechanical alignment: < 100µm</p>
 - Beam-based final alignment
- Magnetic Field:
 - Only boxes 1 & 2 are suitable

7 November 2006

Tobias Haas: Pixel Telescope

Telescope Alignment

- Test alignment procedure using telescope simulation
 - 50k 6 GeV/c electrons from Geant 4
 - Millipede program (V. Blobel)
 - Inject artificial shifts of reference planes
 - Questions:
 - How well can the shifts be recovered?
 - What statistics are needed for an alignment
 - How much redundancy (planes) is needed?

Access to the Facility

• This will be an open general purpose facility with these ingredients:

- DESY test beam
- Large bore high field magnet
- Pixel telescope
- Access is via the EUDET "Transnational Access" (TA) mechanism:
 - Written applications to EUDET
 - Review by the EUDET review committee
 - TA not only comprises access to the facility but also some travel funds.
- Please contact the EUDET coordinator (J. Mnich, joachim.mnich@desy.de) or myself (T. Haas, tobias.haas@desy.de)

Summary

- A general purpose test beam infrastructure is currently being constructed within EUDET:
 - 6 GeV/c electron test beam @ DESY
 - Large bore high field magnet
 - High precision fast beam telescope.
- Demonstrator setup will be available mid 2007
- Final facility will be available end 2008
- Access to the facility is via the EUDET TA review mechanism
- Open to everybody