Status on CMOS sensors

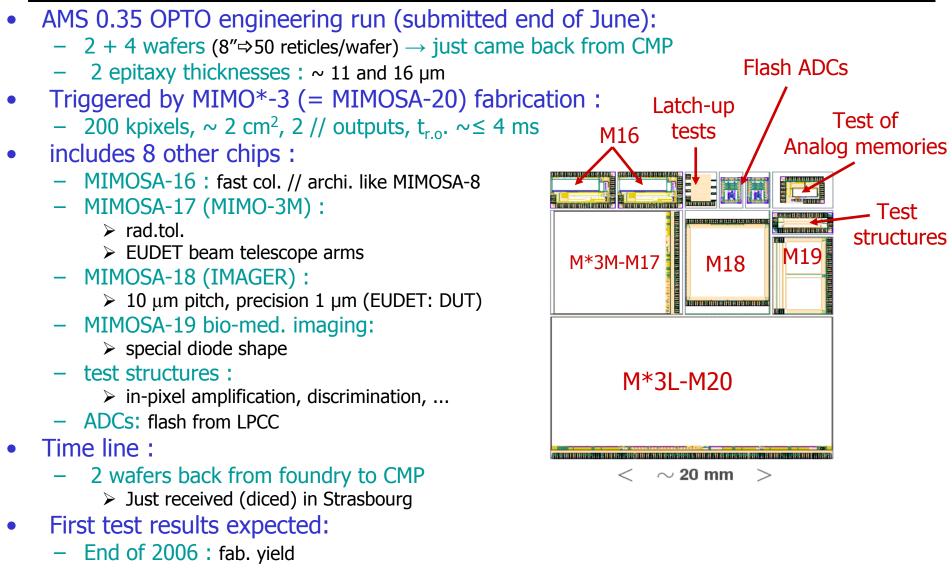
on behalf of

DAPNIA-Saclay, LPSC-Grenoble, LPC-Clermont-Ferrand, JINR-Dubna, DRS/IPHC-Strasbourg

- Status of the main R&D directions
- Engineering Run in AMS-0.35 OPTO Technology
- Progress on ADC developments
- Plans for the coming years
- > Summary

Status of the Main R&D Directions

Status of the Main R&D Directions : Overview

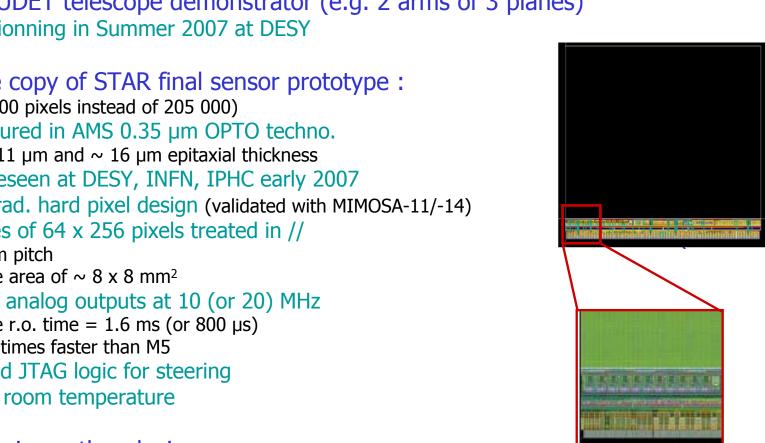

- Engineering run (MIMOSA-16/-20, ADC, test structures) in AMS 0.35 OPTO
- Fast read-out sensor with // processing of columns of pixels:
 - MIMOSA-8 (integ. discri.; TSMC-0.25) tested at CERN-SPS
 - > spatial resolution (binary encoding) $\sim \leq 7 \, \mu m$
 - MIMOSA-16 = AMS-0.35 OPTO version of MIMOSA-8
 - manufactured in Summer (engin. run)
 - Development of fast integrated ADC :
 - several different architecture prototypes fabricated
- Vertex Detector data size :
 - Study of efficiency vs fake hits
 - constraints on design features and performances
- Other on-going activities:
 - Industrial thinning
 - \succ individual chips of ~ 5 x 5 mm² (MIMOSA-10) to 50 μm
 - MIMO* development
 - > data taking with heavy ion collisions at the corner
 - EUDET : beam telescope demonstrator made of MIMOSA sensors
 - should start data taking in 2007

ECFA- Valencia, November 2006

Auguste Besson

Engineering Run in AMS-0.35 OPTO Technology

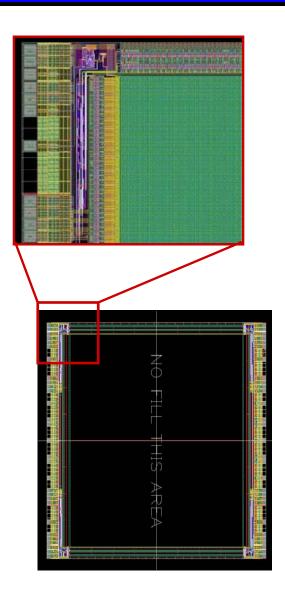
AMS-0.35 OPTO Engineering Run



- 2007 : chip performances (also inclined tracks), performances of $\sim 16 \mu m$ epitaxy

ECFA- Valencia, November 2006

Auguste Besson


Advent of New Macro-Sensor : MIMOSA-17 = MIMO-3M

- Will equip EUDET telescope demonstrator (e.g. 2 arms of 3 planes) Commissionning in Summer 2007 at DESY
- Medium size copy of STAR final sensor prototype :
 - ➤ (65 000 pixels instead of 205 000)
 - Manufactured in AMS 0.35 μm OPTO techno. \blacktriangleright with 11 µm and ~ 16 µm epitaxial thickness
 - Tests foreseen at DESY, INFN, IPHC early 2007
 - Ionising rad. hard pixel design (validated with MIMOSA-11/-14)
 - 4 matrices of 64 x 256 pixels treated in //
 - \geq 30 µm pitch
 - \succ active area of ~ 8 x 8 mm²
 - 4 parallel analog outputs at 10 (or 20) MHz
 - \succ frame r.o. time = 1.6 ms (or 800 µs)
 - $\geq \sim 10$ times faster than M5
 - Integrated JTAG logic for steering
 - Works at room temperature
- Will equip various other devices
 - Beam telescopes (LBL-FNAL, INFN, etc.), CBM MVD demonstrator
 - > allows new studies: inclined tracks, DAQ of combined sensor planes, etc.

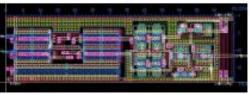
High Resolution Sensor: MIMOSA-18

- May equip DUT surface (EUDET)
 - Provide high resol. despite mult. scattering
 - Commissionning in Summer 2007 at DESY (?)
- Design close to MIMOSA-17 with smaller pitch :
 - (260 000 pixels instead of 65 000)
 - Manufactured in AMS 0.35 μm OPTO techno.
 - \succ with 11 µm and \sim 16 µm epitaxial thickness
 - Tests foreseen at IPHC Nov. '06
 - 4 matrices of 256 x 256 pixels treated in //
 - > 10 µm pitch
 - \succ active area of ~ 5 x 5 mm²
 - 4 parallel analog outputs at 10 (or 20) MHz
 - \succ frame r.o. time = 6.4 ms (or 3.2 ms)
 - Works at room temperature

High Read-Out Speed Architecture: MIMOSA-16

- MIMOSA-16 design features :
 - AMS-0.35 OPTO translation of MIMOSA-8
 - > 11–16 µm epitaxy instead of \sim 7 µm
 - 32 // columns of 128 pixels (pitch: 25 μ m)
 - On-pixel CDS (repeated at end of each column)
 - Discriminator at end of each column
 - 4 sub-arrays :
 - 2 alike MIMOSA-8
 - On pixel CDS validated with M15 (2 different pitches)
 - > 1 with ionising radiation tol. pixels
 - > 1 with enhanced in-pixel amplification
 - (against noise of read-out chain)
- Next steps :
 - lab tests in November 2006
 - beam tests Summer 2007
- Next generations :
 - Large prototype
 - 320 columns of 256 pixels
 - ➤ 15-20 µm pitch
 - ➤ integrated ∅ micro-circuits ???
 - Small prototypes with ADCs replacing discriminators

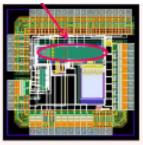
ECFA- Valencia, November 2006


Progress on ADC developments

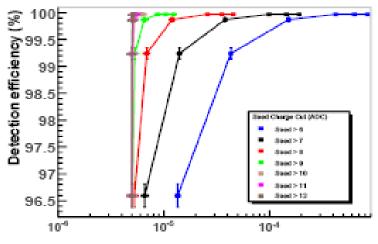
Progress on ADC developments and plans

- Several different ADC architectures under development
 - LPCC (Clermont) : flash 4+1.5-bit ADC
 - \succ 1st proto tested, 2nd proto back from foundry
 - LPSC (Grenoble): Ampli + semi-flash (pipe-line) 5-bit ADC
 - ➢ 1st proto tested, 2nd proto under test
 - DAPNIA (Saclay) : Ampli + Suc.App.R (4- and) 5-bit ADC
 - \succ 1st proto under test
 - IPHC (Strasbourg) : SAR 4-bit and Wilkinson 5-bit ADCs:
 - \succ 1st proto submitted end October 06
- Present outcome of development :
 - Typical differences between architectures :
 - ➤ ~ factor 2 in power & speed
 - Observed pbs: loss of 1–2 bits
 - (e.g. due to offset dispersion between columns)
 - ➢ solutions under study
 - ⇒ include enhanced signal amplification before ADC
- Next steps :
 - Final ADC designs expected to come out in 2007
 - Submission of 1st col. // pixel array proto equipped with ADCs & \emptyset end 2007

ECFA- Valencia, November 2006



LPSC, 5-bit ADC



DAPNIA, 6 ADC in //

Vertex Detector Data Flow

- Raw data flow (in absence of any signal):
 - total = 5 Gpixels / train \Rightarrow 25 Gpixels / s
 - 3 Bytes / pixel (20 address bits + 5–4 charge bits) ⇒ <u>raw data flow</u> ⇒ 75 GB/ s
- Signal data size dominated by $e^{\pm}_{\mbox{\scriptsize BS}}$:
 - $\geq \sim 10^3$ hits / BX $\Rightarrow 3.10^6$ hits / train
 - − Assuming 5 pixels / cluster : $15 \cdot 10^6$ pix / train \Rightarrow 45 MB/ train
 - Uncertainties on beamstrahlung rate prediction
 - \succ (factor 3 5) \Rightarrow 135–225 MB/train \Rightarrow 0.7–1.1 GB/ s
- Efficiency vs rate of fake clusters
 - > studied on real (MIMOSA-9) beam test data:
- \succ Eff_{det} ~ 99.9 % for fake rate ~ 10⁻⁵
- ➢ Electronic noise ~≤ 1−10 MB/s after sparsification
 ⇒ negligible

Efficiency vs fake rate

Fake rate per pixel

Plans for the coming years

Mid-Term Objectives of CMOS Sensor Development

- 2006 :
 - Production (engineering run) :
 - > STAR demonstrator final proto., EUDET Beam Telescope demonstrator
 - > studies : yield, "20 μ m" option, thinning, perfo. with inclined tracks, ...
 - Prototyping :
 - > various ADCs, col. // discri. archi., high-resol. array, ...
- 2007 :
 - Production (engineering run):
 - final chip for STAR demonstrator (analog output)
 - Prototyping :
 - > small array with integ. ADC/col. , medium size fast array with integ. discri., $\emptyset \ \mu$ circuits, new fab. techno., stitching (?)
- 2008 :
 - Production (engineering run):
 - EUDET Beam Telescope final sensor (digital output)
 - Prototyping :
 - ➤ medium size pixel array with integ. ADC & Ø, new fab. techno.,
 - 1st ladder equipped with fast sensors (?), ...
- 2009 :
 - Production (engineering run):
 - final STAR-HFT sensors (digital output), etc.

Summary

Summary

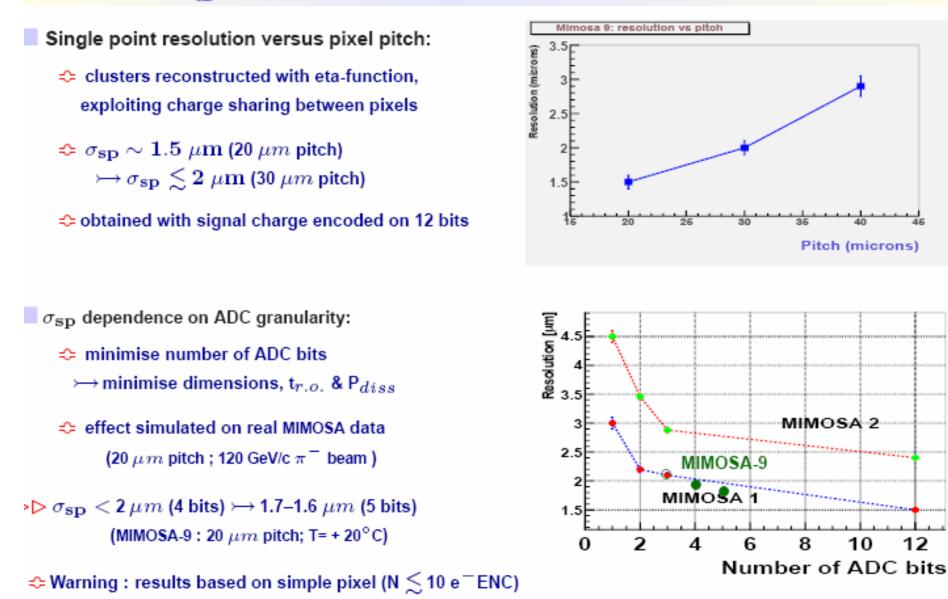
- Engineering run in AMS 0.35 OPTO technology completed (triggered by STAR HFT):
 - 6 wafers fabricated (5 different sensors, 1 ADC, test structures)
 - > Tests Nov. 2006 Summer 2007 + fabrication yield + \sim 16 µm epitaxy option
 - New generation of real size sensors (still with analog output)
 - > 2 for EUDET beam tel. demonstrator ; 1 for CBM demonstrator ; 1 final STAR proto.
- Fast column parallel architecture with digitised output :
 - Small proto. of binary output architecture fabricated in AMS 0.35 OPTO
 ➢ Next step (2007 ?) : real size (e.g. 320 x 256 pixels, 15 µm pitch) proto. ?
 - ADC devt progressing steadily final architectures expected in 2007
 - Next step (2007 ?) : small sensor proto. with integ. ADC instead of discri. at end of each column
- Sensors will soon be operated in real experimental conditions :
 - 2007 : EUDET tele. demonstrator ; MIMO*-2 ladder inside STAR-DAQ
 - 2008 : STAR HFT : 2 layers of 60 + 180 sensors (~100 MPix) ; CBM demonstrator

Back up

Mid-Term Applications of CMOS Sensor

- CMOS sensors will be operated in real (less demanding) experiments before end of decade
 - Opportunity to assess their performances for the ILC running conditions
- MIMOSA sensors will equip STAR Heavy Flavour Tagger:
 - 2008: analog output, 4 ms frame r.o. time
 - 2011: digital output, 200 µs frame r.o. time
- Similar sensors will equip EUDET beam telescope:
 - 2007: demonstrator with analog output
 - 2008: final device with digital output
- Other applications of STAR-HFT sensors :
 - Beam telescopes at LBL-FNAL
 - INFN demonstrator of CBM Micro-Vertex-Detector

data flow

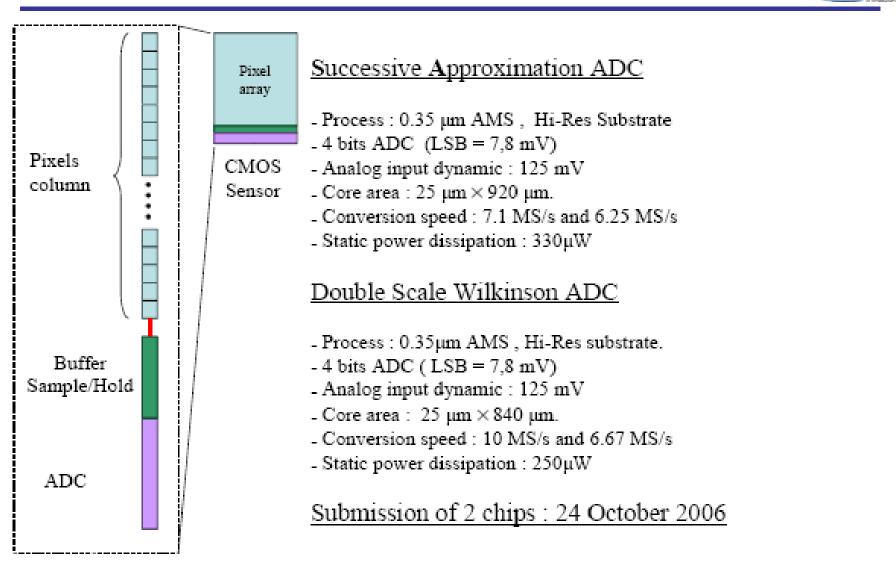

- L0 : 25 Mpixels read 40 times / train = 1 Gpixels / train
- L1 : 50 MPixels read 20 times / train = 1 Gpixels / train
- L2 + L3 + L4 : ~≤300 Mpixels read ~≤10 times /train = 3 Gpixels / train
 - > total = 5 Gpixels / train \Rightarrow 25 Gpixels / s
 - > 3 Bytes / pixel (20 address bits + 5–4 charge bits) ⇒ <u>raw data</u> <u>flow ⇒ 75 GB/ s</u>

- Thinning of individual chips smaller than a reticle :
 - 5 copies of MIMOSA-10 (\sim 4 x 5 mm²) thinned to 50 μ m
 - no visible damage
 - 50 µm thin MIMOSA-5 (3.5 cm²) chips being characterised on ALS beam (1.5 GeV e⁻) by LBNL team
 - several copies of MIMOSA-5 (3.5 cm²) sent to Dalian Univ. (µelectronics Depmt) for dedicated thinning (etching).
- Development of mechanical supports and chip servicing :
 - − 50 µm thin MIMO-2 chips being mounted on ladder and installed inside STAR
 > real condition tests (within STAR DAQ)
 - MIMOSA-5 chips (thinned to 50 µm) sent to RAL-Liverpool for mounting tests on ultra light (0.1 % X0 ?) mechanical supports developed by LCFI coll.

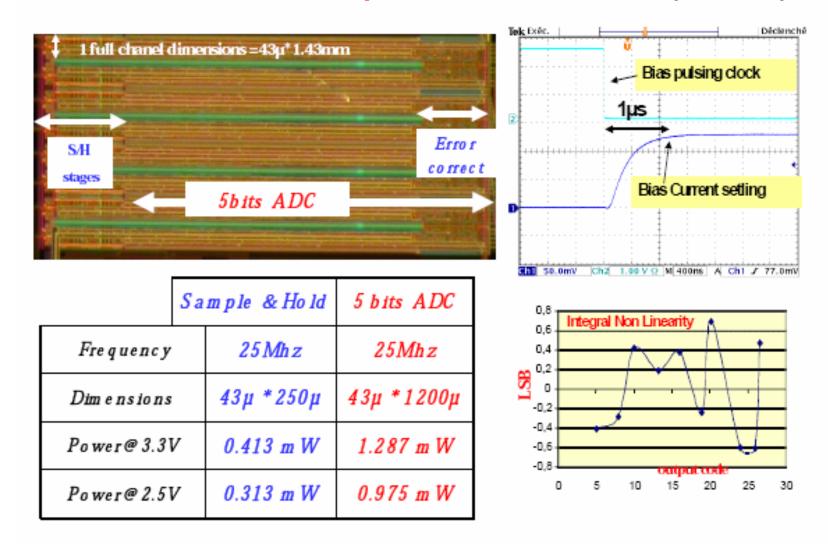
plans

Application	version	2006	2007	2008	2009	2010	2011
STAR	HFT-1	proto. final	Prod.				
	HFT-2	R&D	R&D	proto final	Prod.		
EUDET	BT-1	2 Prod.					
	BT-2	R&D	proto final ?	Prod.			
Imagerie		R&D	proto final	Prod. ?			
Thèmes génériques							
Capteurs rapides :	o architecture	R&D	R&D	R&D +	R&D ++	proto ILC	proto CBM
	○ ADC	R&D	proto final	7			
	 numérique 	pré-étude	R&D	proto final	7		
Tolérance aux rayonnements		R&D	R&D	R&D	R&D	7	
Technologies de fabrication		R&D	R&D	R&D	R&D	∕`???	
Amincissement		R&D	R&D	R&D	OK ???		
Aboutement		-	pré-étude	R&D	R&D	OK ???	

AMS-0.35 OPTO Perfomances : Spatial Resolution

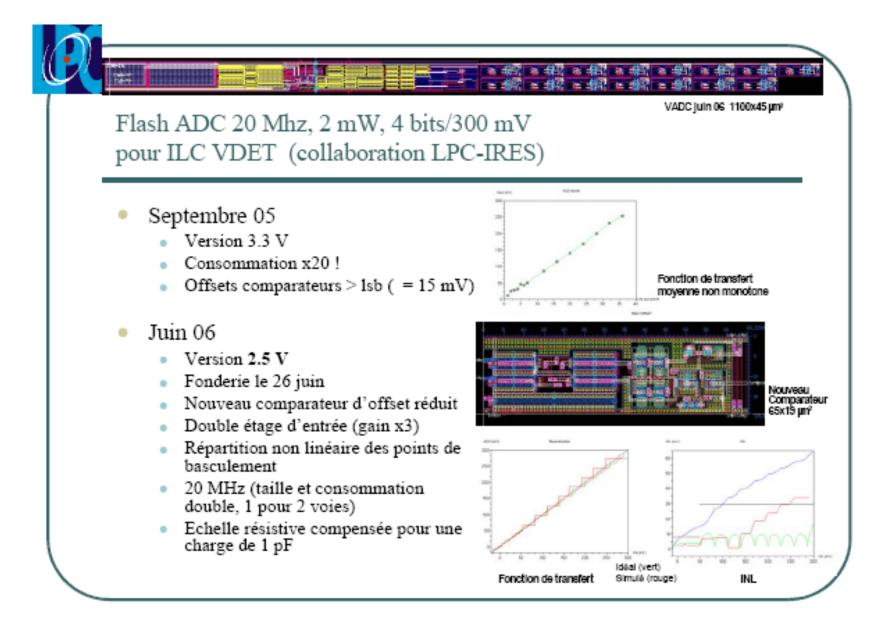


 \Rightarrow rad. tol. pixel integrating CDS (N \lesssim 15 e⁻ENC) not yet evaluated


ECFA- Valencia, November 2006

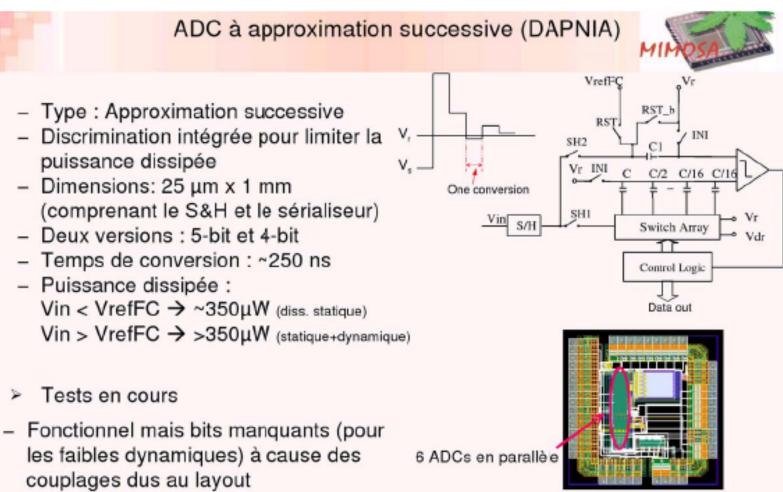
EUDET meeting

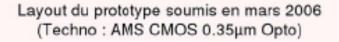
Development of ADC at IPHC


S/H & 5 bits Pipe line ADC =>(LPSC)

ECFA- Valencia, November 2006

.E





×

Status of R&D at DAPNIA

 Refaire le layout & intégrer un amplificateur entre le pixel et l'ADC?

