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* Brief introduction
% Vertex Detector R&D

® Column-Parallel CCDs

® In-situ Storage Image Sensors
** Mechanical support studies

* Plans
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Introduction

What is required for the vertex detector at ILC:

® Excellent point resolution (3.5 pm), small pixel size = 20 um, close to IP
® Low material budget ( < 0.1% X, per layer), low power dissipation
® Fast (low occupancy) readout — challenging, two main approaches

® Tolerates Electro-Magnetic Interference (EMI)

What LCFI has done so far:
® Made 2 generations of Column Parallel CCDs: CPC1 and CPC2

® In-situ Storage Image Sensor — proof of principle device ISIS1 designed and tested
® CMOS readout chips for CPC1/2: 2 generations, bump bonded to the CCDs

® Driver chip for CPC2 designed and manufactured

® Built lots of electronics to support the detectors

® Extensive tests of stand-alone devices and hybrid bump-bonded assemblies
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Second Generation CPCCD : CPC2
ISIS1

e 6 wafers with single level metal:

s Four CPC2 wafers (3 x 100 Q.cm/25 ym
epi and one 1.5kQ.cm/50 ym epi)

«* Two 100 Q.cm wafers sent to VTT for
bump bonding

e 2 CPC2 wafers with 2-level metal (busline-
free CCD) delivered

+» Designed to reach 50 MHz operation
% Important milestone for LCFI

e We have another 12 wafers to be processed
after evaluation of the present variants

CPC2-10

Yield from 4 CPC2 wafers: 71% for CPC2-10, 63% for CPC2-40, 25% for CPC2-70
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® CPC2-10 (low speed version) works fine,

here at 1 MHz clock

® 55Fe spectrum at -40 °C and 500 ms
integration time

® Noise is a bit too high, external
electronics is suspected
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® Devices with 2-level metal clock
distribution for high speed (busline-free)
have been received

+» The whole image area serves as a
distributed busline

® CPC2 chips bump-bonded to CPR2 have
also been received

® Tests will follow immediately
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New Ideas: CCDs for Capacitance Reduction
Open gate CCD
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Gate averlap could be
only 3-5 pm wide

e High CCD capacitance is a challenge to drive because of the currents involved

e Can we reduce the capacitance? Can we reduce the clock amplitude as
well?

e Inter-gate capacitance C,; is dominant, depends mostly on the size of the
gaps and the gate area

e Open phase CCD, “Pedestal Gate CCD”, “Shaped Channel CCD” — new
ideas under development, could reduce Cig by ~4!

e Currently designing small CCDs to test several ideas on low clock and low
capacitance, together with e2V Technologies
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Readout Chips — CPR1 and CPR2

Bump bond pads Voltage and charge amplifiers
125 channels each

Analogue test I/O
Digital test 1/0

5-bit flash ADCs on 20 pm
pitch

Cluster finding logic (2x2
kernel)

Sparse readout circuitry

FIFO

® CPR2 designed for CPC2
® Results from CPR1 taken into account
® Numerous test features

® Size : 6 Mm X 9.5 mm

Wi;elBump bond ® 0.25 pm CMOS process (IBM)
pads

® Manufactured and delivered February 2005
Steve Thomas/Peter Murray, RAL
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CPR2 Test Results
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% e Cluster separation studies:
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e Extensive range of improvements to be
fE implemented in the next version (CPR2A)

05'0 55 S0 45 40 I/ 2B 2 15 1D ) CPRZA design haS Started

Chanmel Murnber

Thanks to Tim Woolliscroft, Liverpool U
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Clock Drive for CPC2

Transformer driver:

® Requirements: 2V
CPC2-40);

® Planar air core transformers on 10-layer PCB, 1 cm
square

ok-pk at 50 MHz over 40 nF (half

® Parasitic inductance of bond wires is a major
effect — fully simulated;

® Will work with the high speed busline-free CCD

Chip Driver CPD1:

® Designed to drive the outer layer CCDs (127 nF/phase) at 25 MHz
and the L1 CCD (40 nF/phase) at 50 MHz

One chip drives 2 phases, 3.3 V clock swing
0.35 um CMOS process, chip size 3 x 8 mm?
CPC2 requires 21 Amps/phase!

Delivered in October

Steve Thomas/Peter Murray, RAL
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In-situ Storage Image Sensor (ISIS)
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Chris Damerell, RAL

Operating principles of the ISIS:

1. Charge collected under a photogate;

2. Charge is transferred to 20-pixel storage CCD in situ, 20 times during
the 1 ms-long train;

3. Conversion to voltage and readout in the 200 ms-long quiet period
after the train (insensitive to beam-related RF pickup);

4. 1 MHz column-parallel readout is sufficient;
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In-situ Storage Image Sensor (ISIS)
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® The ISIS offers significant advantages:

% Easy to drive because of the low clock
frequency: 20 kHz during capture, 1 MHz
during readout

s ~100 times more radiation hard than
CCDs (less charge transfers)

*» Very robust to beam-induced RF pickup

® ISIS combines CCDs, active pixel transistors
and edge electronics in one device: specialised
process

® Development and design of ISIS is more
ambitious goal than CPCCD

® “Proof of principle” device (ISIS1) designed
and manufactured by e2V Technologies
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The ISIS1 Cell

® 16x16 array of ISIS cells with 5-pixel buried channel
CCD storage register each;

® Cell pitch 40 pm x 160 pm, no edge logic (pure CCD
process)

® Chip size = 6.5 mm x 6.5 mm
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Photogate aperture (8 pm square)

CCD (5x6.75 um pixels)
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Tests of ISIS1
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® The top row and 2 side columns are not protected and collect diffusing

charge

® The bottom row is protected by the output circuitry

® ISIS1 without p-well tested first and works OK

® |ISIS1 with p-well has very large transistor thresholds, permanently off —

re-run agreed with e2V
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Mechanical Support Studies

® Goal is 0.1% X, per ladder or better, while allowing low temperature operation
(~170 K)

® Active detector thickness is only 20 ym

® Unsupported silicon
s Stretched thin sensor (50 um), prone to lateral deformation
+» Fragile, practically abandoned

® Silicon on thin substrates

® Sensor glued to semi-rigid substrate held under tension

® Thermal mismatch is an issue — causes the silicon to deform

® Many studies done for Be substrate
® Silicon on rigid substrates

® Shape maintained by the substrate Stephanie Yang, Oxford U
® Materials with good thermal properties available

® Foams offer low density and mass while maintaining strength
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Mechanical Support Studies

® RVC (Reticulated Vitreous Carbon) and silicon carbide are excellent thermal match
to silicon

® Silicon-RVC foam sandwich (~ 3% density)

® Foam (1.5mm thick), sandwiched between two 25 ym silicon pieces - required
for rigidity

® Achieves 0.09% X,

® Silicon on SiC foam (~ 8% density)
® Silicon (25 pm) on SiC foam (1.5mm);
® Achieves 0.16% X,

® 0.09% X, possible with lower density foams (< 5%)
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Silicon Carbide foam (foam thickness 1.5 mm)
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Conclusion and Plans

® Detector R&D is progressing very well
® CPCCD program most advanced:
+ Second generation high speed CPCCD will be evaluated
++ Hybrid assemblies CPC2/CPR2 delivered, tests imminent
s+ Programme for capacitance and clock amplitude reduction is underway
¢ Driver system under development
s CMOS driver chip already designed and delivered
s Transformer drive also pursued
¢ Third generation CMOS readout chips for CPC1/2 in design stage
® ISIS work:
® “Proof of principle” device works
® Design of second generation, small pixel ISIS2 will follow next year

® Mechanical support aims at < 0.1% X, using modern materials

Visit us at http://hepwww.rl.ac.uk/Icfi/
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CPC1/CPR1 Performance

5.9 keV X-ray hits, 1 MHz column-parallel readout
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® First time e2V CCDs have been bump-bonded

® High quality bumps, but assembly yield only 30% : mechanical
damage during compression suspected

® Differential non-linearity in ADCs (100 mV full scale) : addressed

in CPR2 Bump bonds on CPC1
under microscope
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The Column Parallel CCD

® Main detector work at LCFI

® Every column has its own amplifier and ADC - requires readout chip

® Readout time shortened by orders of magnitude

® All of the image area clocked, complicated by the large gate capacitance

® Optimised for low voltage clocks to reduce power dissipation

M
A
N
v \ 4 Y \ 4 \ 4 \ 4 \ / \ \ /
“Classic CCD”
Readout time =
NxM/f

out

ECFA 2006, Valencia

M

>
1
1

YIVYI|Y YIVYIVI|Y \
Column Parallel

CCD
Readout time = N/f

Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory

CPCCD

Driver circuits/
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