Pre-prototype GEM panel for LP1

Japanese TPC group Akira Sugiyama Saga Univ.

What is Large Prototype

Why we need pre-prototype test

What we are going to make

GEM panel 100um GEM

Schedule

Large prototype TPC in LC TPC collab.

Mom. resolution
dead space
Large area MPGD
calibration

reconstruction efficeincy
under non-uniform field
low material TPC

could be studied in LargePrototype in LC-TPC

Conceptual Design at moment

Endplate
+

small/medium size panel
1 MPGD/panel ??

Gas seal by endplate
stand for pressure
Size of panel ??

Readout electronics
——>std. RO @LP1

GEM/MM panel
for Pixel

Alignment using tracks Efficiency at boundary

LC-TPC prototype study schedule

EUDET

limited time for R&D !!

"Pre-PROTO"

though many issues are not fixed yet

What we want to do at Pre-proto

Production of GEM panel

minimize dead area due to GEM support frame specially in radial direction we hope to remove radial frame to avoid loss of series of hit info. can we mount GEM properly? how do we stretch GEM?

Pad plane

Proper Pad size

Analytic formula teach us max. pad width in order to avoid hod-scope effect diffusion in GEMs must be larger than ~0.3 of pad pitch

~300um w/ 5mm thick for the most of gas 1mm pitch of pad width

length angular dep. of

 $\sigma_0 \sim$ 30um @6mm for 50GeV track staggered pad layer by layer

forget about loss of a half pad at edge (~0.5mm effect)

SIZE of panel under discussion

We choose Dan's early design

(Final panel size will be decided soon)

GEM structure

narrow frame (mount mechanism) double GEM(100um thick) : high gain simple strucuture how to provide HV low capacitance (100um + division) frame F. Sauli suggested < 70cm2 @50um field shaping at frame **GFM** GEM is divided into GEM is stretched by the post two in r direction. Pad: ~ 1 x 5.5 mm2 Pad Plane staggered a half pitch

GEM

We are considering to use 100um GEM in order to simplify the structure on the panel

Double GEM is simpler than triple 100um GEM provides good enough gain

Scienergy CO.(Japanese GEM company) produce 100um thick GEM

Laser etching

straight hall

instead of bi-conical in wet

material choice

LCP(liquid Crystal Polymer)

easier to be processed than PI

Property of 100um thick GEM

表1 ポリイミドと LPC の特性比較

特性	吸水率	吸湿率	湿度膨張係数	比誘電率 ε γ	誘電正接tan
単位	%	%	ppm/%RH	(at 1GHz)	(at 1GHz)
PI	3.1	1.6	30	3.51	0.0113
LPC	0.04	<0.04	1	3.20	0.0024

PolyImide

∠Vgem vs gain LCP

Mount mechanism

Pad size

Actual Pad size is limited by arrangement of connectors conn. size is 5mm ×11.5 mm but soldering / line design need more space ~ 8.5mm × 15mm

Leif's drawing

of connectors

10 lyr \times 12 con./lyr

20 layers 192 pads /layer

Length of pad pitch 5.55 mm

1.18 mm @outermost

Width of pad pitch 1.08 mm @innermost

Schedule

Nov. Dec. Jan. Feb. Mar.

test of Mount mechanism

now: We are facing to ...

GEM production

Pad Plane production

Assembly

TEST

Gain check over the panel

Summary

We started to make pre-prototype as R&D for LP1

how to minimize dead region due to GEM support

We will try to release every information about this study

please give us any suggestions/idea for pre-prototype study AND be a collaborator

we want to work together!