

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

How light can the lightest neutralino be?

Olaf Kittel

University of Bonn, Germany

all work in progress, in collaboration with:

Herbi Dreiner, Sven Heinemeyer, Ulrich Langenfeld, Arne Weber, Georg Weiglein

ILC-Valencia 06, November 7, 2006

Outline

- Introduction and motivation
- A light neutralino in the MSSM How light can it be?

Look at bounds from ...

- . . . cosmology
- . . . precision observables
- . . . neutralino production at LEP
- Radiative neutralino production at the linear collider
- Summary and conclusions

1 Introduction

The Standard Model (SM) has been tested to high precision.

However we need . . .

- solution to hierarchy problem
- window to gravity
- dark matter candidate, CP-phases for baryon asymmetry, ...

One solution is Supersymmetry (SUSY).

- symmetry between bosons and fermions
- minimal SUSY extension of SM \rightarrow MSSM

The chargino mass matrix \mathcal{M}_\pm

• Charginos $\tilde{\chi}_i^{\pm}$ are a mixture of charged winos \tilde{W}^{\pm} and higgsinos \tilde{H}^{\pm} .

$$\mathcal{M}_{\pm} = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin(\beta) \\ \sqrt{2}M_W \sin(\beta) & \mu \end{pmatrix}$$

• Parameters:

 M_2 : wino mass, soft supersymmetry breaking parameter

- μ : Higgs mixing parameter
- $tan \beta$: ratio of vacuum expectation values of the two neutral, CP-even Higgs fields
- |eigenvalues| of \mathcal{M}_{\pm} = chargino masses $m_{\tilde{\chi}_{i=1,2}^{\pm}}$

The neutralino mass matrix \mathcal{M}_0

• Neutralinos $\tilde{\chi}_i^0$ are a mixture of the neutral gauginos (\tilde{B}, \tilde{W}^3) and higgsinos $(\tilde{H}_u, \tilde{H}_d)$.

$$\mathcal{M}_{0} = \begin{pmatrix} M_{1} & 0 & -m_{Z} \sin(\theta_{W}) \cos(\beta) & m_{Z} \sin(\theta_{W}) \sin(\beta) \\ 0 & M_{2} & m_{Z} \cos(\theta_{W}) \cos(\beta) & -m_{Z} \cos(\theta_{W}) \sin(\beta) \\ -m_{Z} \sin(\theta_{W}) \cos(\beta) & m_{Z} \cos(\theta_{W}) \cos(\beta) & 0 & -\mu \\ m_{Z} \sin(\theta_{W}) \sin(\beta) & -m_{Z} \cos(\theta_{W}) \sin(\beta) & -\mu & 0 \end{pmatrix}$$

- M_1 : bino mass, soft supersymmetry breaking parameter
- |eigenvalues| of \mathcal{M}_0 = neutralino masses $m_{\tilde{\chi}^0_{i=1,2,3,4}}$

Motivation: Neutralino mass at LEP

• Experimental search for charginos $\tilde{\chi}_1^{\pm}$ at LEP:

chargino mass limit: $m_{\tilde{\chi}_1^\pm} > 104~{\rm GeV} \implies M_2, \mu \gtrsim 100~{\rm GeV}$

- Assume SUSY Grand Unified Theory (GUT): $M_1 = \frac{5}{3} \tan^2(\theta_w) M_2$ $\Rightarrow M_1 \gtrsim 50 \text{ GeV}$
 - \Rightarrow Neutralino mass constrained to: $m_{\tilde{\chi}_1^0} \gtrsim 50 \text{ GeV}$
- What happens if the GUT relation is dropped?

Consider the neutralino mass matrix \mathcal{M}_0 :

- M_1 is now a free parameter! Can have $m_{\tilde{\chi}^0_1} = 0!$
- Calculate the determinant:

 $\det \left[\mathcal{M}_0(M_1, M_2, \mu, \tan \beta) \right] = 0$ $\Rightarrow M_1 = \frac{m_Z^2 M_2 \sin^2 \theta_w \sin(2\beta)}{\mu M_2 - m_Z^2 \cos^2 \theta_w \sin(2\beta)} \approx 0.05 \frac{m_Z^2}{\mu} = \mathcal{O}(1 \text{ GeV})$ $\Rightarrow M_1 \ll M_2$ $\Rightarrow \tilde{\chi}_1^0 \text{ bino - like!}$

• For $\tilde{\chi}_1^0 =$ bino, the $Z \tilde{\chi}_1^0 \tilde{\chi}_1^0$ coupling vanishes at tree-level. \Rightarrow No significant contribution to the Z-width!! What about CP phases in the neutralino sector?

- In general, M_1 and μ can be complex
- CP phases φ_{M_1} and φ_{μ} constrained by electric dipole moments \rightarrow not constrained in certain models (flavor violation, cancellations,...)
- Calculate the determinant:

$$\det \left[\mathcal{M}_0(M_1, M_2, \mu, \tan \beta) \right] = 0$$

$$\Rightarrow M_1 \approx \frac{m_Z^2 \sin^2 \theta_w \sin(2\beta)}{\mu \cos(\varphi_\mu + \varphi_{M_1})} \quad \text{and} \quad M_2 = \frac{m_Z^2 \cos^2 \theta_w \cos(2\beta) \sin(\varphi_{M_1})}{\mu \sin(\varphi_\mu + \varphi_{M_1})}$$

• Zero mass neutralino still possible, however even more fine-tuning.

2 A light neutralino in the MSSM – How light can it be?

Look at bounds from ...

- ... cosmology
- ... precision observables
- ... colliders (LEP)

Bounds on neutralino mass from cosmology

• Dark matter density: MSSM with non-universal gaugino masses:

 $\Rightarrow m_{\tilde{\chi}_1^0} > 6 \text{ GeV} \qquad \begin{array}{l} [\text{e.g. Bottino et al., hep-ph/0304080}] \\ [\text{Belanger et al., hep-ph/0310037}] \end{array}$

depends on the cosmological standard model

• Supernova cooling:

 $m_{\tilde{\chi}_1^0} \gtrsim 0.2 \,\text{GeV}$ for $m_{\tilde{e}} \approx 500 \,\text{GeV}$ [Dreiner et al., hep-ph/0304289] depends on selectron mass $m_{\tilde{e}}$, and on the explosion mechanism

• Red giant cooling? What if neutralinos are hot dark matter?

However:

Look at bounds, which are independent of cosmological models.

Bounds on neutralino mass from precision observables

Assuming $m_{\tilde{\chi}^0_1} = 0$, we have checked values of:

- $\sin^2(\theta_w)$
- M_W , Γ_W
- $(g-2)_{\mu}$
- \rightarrow No constraints for $m_{\tilde{\chi}_1^0}=0!$

In collaboration with: Sven Heinemeyer, Arne Weber, Georg Weiglein

In addition: have to look at rare decays, e.g., $b \to s\gamma$, $\Upsilon(1s) \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$ [McElrath, hep-ph/0506151] $B \to K^{(*)}$ + invisible, or $K \to \pi + \tilde{\chi}_1^0 \tilde{\chi}_1^0$ Bounds on neutralino mass from measurements at LEP

- neutralino pair production (direct): $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_i^0$
- radiative production (indirect): $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$

LEP II: center of mass energy $\sqrt{s}=$ 200 GeV, luminosity $\mathcal{L}=$ 100 pb $^{-1}$

No LEP bounds from radiative production $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$

3 Note on radiative neutralino production at the ILC

- Radiative neutralino production $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$ can not be mesured at LEP.
- However, good prospects at at the ILC, due to high luminosity, e.g., $\mathcal{L} = 500 \text{ fb}^{-1}$.

Radiative neutralino production at the ILC

Consider e.g. the SPS 1a scenario ('typical' SUSY point):

$\tan\beta = 10$	$\mu = 352 \text{ GeV}$	$M_2 = 193 { m GeV}$	$m_0 = 100 { m GeV}$
$m_{\chi^0_1} = 94 {\rm GeV}$	$m_{\chi_1^\pm}=$ 178 GeV	$m_{\tilde{e}_R} = 143 \text{ GeV}$	$m_{\tilde{e}_L} = 204 \text{ GeV}$

At $\sqrt{s} = 500$ GeV with $\mathcal{L} = 500$ fb⁻¹, and beam polarizations $P_{e^-} = 80\%$, $P_{e^+} = 60\%$ we find:

- signal: $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma) = 70 \text{ fb}$ background: $\sigma(e^+e^- \rightarrow \nu \bar{\nu} \gamma) = 330 \text{ fb}$
- Signal to background ratio: $\frac{N_S}{N_B} = \frac{1}{5}$, Significance: $\frac{N_S}{\sqrt{N_B}} = 80$

[Dreiner, O.K., Langenfeld: hep-ph/0610020]

4 Summary and conclusions

Zero mass neutralino is allowed!

• no constraints from electroweak precision data and rare decays

• no constraints from
$$e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_i^0$$

 $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$

Summary and conclusions: Part II

Radiative production of neutralinos $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$

- LEP: due to small luminosity (order 100 pb⁻¹) significance S < 0.1
- ILC:
 - $-\mathcal{L} = 500 \text{ fb}^{-1} \rightarrow \text{significance } S = 80 \text{ for SPS 1a}$
 - polarized beams enhance signal and reduce background \rightarrow talk in polarization session
 - $\chi_1^0 \tilde{\chi}_1^0 \gamma$ could be the lightest SUSY state to be observed!

Energy distribution and \sqrt{s} dependence

Beam polarization dependence

 $\mu=352~{\rm GeV},~M_2=193~{\rm GeV},~{\rm tan}\,\beta=10,~m_0=100~{\rm GeV}$

Significance

$$P_{e^+}$$

$$S = \frac{N}{\sqrt{N + N_B}}$$
$$N = \mathcal{L} \times \sigma$$
$$\Rightarrow S = \frac{\sigma}{\sqrt{\sigma + \sigma_B}} \sqrt{\mathcal{L}}$$

μ and M_2 dependence

selectron mass dependence for different sets of beam polarizations

 $\sqrt{s} = 500 \text{ GeV}, \ \mathcal{L} = 500 \text{ fb}^{-1}; \ \mu = 500 \text{ GeV}, \ \tan \beta = 10^{-1}$ solid: $(P_{e^-}, P_{e^+}) = (0, 0);$ dot-dashed: (0.8, 0); dotted: (0.8, -0.6)