Comparison of Reconstruction Methods for a TPC with GEM Amplification and Pad Readout

Ralf Diener, FLC TPC Group

Outline:

- Data Sets and Measurement Setup
- Reconstruction Software and Resolution Calculation
- Resolution Results
- Monte Carlo Simulation: Performance and Systematics
- Conclusion and Outlook

bmb+**f** - Förderschwerpunkt

Elementarteilchenphysik

Measurement Setup and Data Sets

- Length: 800 mm , Ø : 270 mm
- Sensitive volume: 666.0 x 49.6 x 52.8 mm³

- Magnetic field up to 5.25 T (deviation<7%)
- Data Sets for 0, 1, 2 and 4 T

- Studies with cosmic muons
- Gas: TDR Ar:CH₄:CO₂ 93:5:2
 P5 Ar:CH₄ 95:5
- Pad layouts:

 non-staggered⁽¹⁾
 staggered⁽²⁾
 columns, 8 rows
 pitch: 2.2 x 6.2 mm

:Ir

116

- Triple GEM amplification setup:
 - Transfer fields : 1500 V/cm Induction field : 3000 V/cm
 - About 320 335 V per GEM

Measurement Setup and Data Sets

- Length: 800 mm , Ø : 270 mm
- Sensitive volume: 666.0 x 49.6 x 52.8 mm³

- Magnetic field up to 5.25 T (deviation<7%)
- Data Sets for 0, 1, 2 and 4 T

- Studies with cosmic muons
- Gas: TDR Ar: CH_4 : CO_2 93:5:2 P5 Ar: CH_4 95:5
- Pad layouts:

 non-staggered⁽¹⁾
 staggered⁽²⁾
 columns, 8 rows
 pitch: 2.2 x 6.2 mm

ile

116

- Triple GEM amplification setup:
 - Transfer fields : 1500 V/cm Induction field : 3000 V/cm
 - About 320 335 V per GEM

Reconstruction and Resolution

Reconstr. Software MultiFit

- 3 Step process: Hit Reconstruction → Track Finding → Track Fitting
- 2 Track Fit Methods implemented: (both straight line and circular arc)
 - Chi Squared Method: fits track hyphothesis to reconstructed hits
 ← Pad Response Correction (PRC) implemented in hit reconstruction
 - Global Fit Method^(*): fits track hyphothesis to measured pulses (signals on the pads) → built-in PRC

Ralf Diener, Hamburg University

- Point Resolution
 - True track position not known
 → Geometric Mean Method
 - Two residuals calc. by MultiFit:
 - for track fit including the point (denoted "distance")
 - for track fit without the point (denoted "*residual*")
 - Resolution calculated from geometric mean of the width of both residual distributions:

Reconstruction and Resolution

Reconstr. Software MultiFit

- 3 Step process: Hit Reconstruction → Track Finding → Track Fitting
- 2 Track Fit Methods implemented: (both straight line and circular arc)
 - Chi Squared Method: fits track hyphothesis to reconstructed hits
 ← Pad Response Correction (PRC) implemented in hit reconstruction
 - Global Fit Method^(*): fits track hyphothesis to measured pulses (signals on the pads) → built-in PRC

Ralf Diener, Hamburg University

Point Resolution

- True track position not known
 → Geometric Mean Method
- Two residuals calc. by MultiFit:
 - for track fit including the point (denoted "distance")
 - for track fit without the point (denoted "residual")

Proven for

-straight tracks:

-curved tracks : MC studies

Page 2 / 9

analytically

 Resolution calculated from geometric mean of the width of both residual distributions:

(*): "TPC Performance in Magnetic Fields with GEM and Pad Readout" $\sigma = \sqrt{\sigma_{distance}} \cdot \sigma_{residual}$ D. Karlen, P. Poffenberger, G. Rosenbaum (University of Victoria and TRIUMF, Canada) Nucl.Instrum.Meth. A555 (2005) 80-92 track parameters Fit results: X cosmic muon Intercept X₀, Slope X, sensitive volun X Ω Circ. Arc: Curvature, MultiFit: Global Fit: Width σ coordinate TPC system (can be fixed during fit)

Point Resolution Studies: Introductory Remarks

- Cuts:
 - Angle: φ < 0.1 rad (5.73°)
 Θ < ~0.44 rad (25.0°)
 - Exclude outer columns: only hits taken into account with (*nearly*) complete charge measured
 - Minimum of 6 hits per track
- Gas mixtures: TDR (Ar-CH4-CO2: 93-5-2) P5 (Ar-CH4: 95-5)

diffusion coefficient D defocussing constant σ_{o}

 $\sigma = \sqrt{Dz + \sigma_0}$

de	derived from GARFIELD7 simulation (0ppm water content)				
		P5		TDR	
В (T)	D (mm) 10-4	$\sigma_0^{}$ (mm ²)	D (mm) 10 ⁻⁴	$\sigma_0^{} (\text{mm}^2)$
0		571	0,288	202	0,180
1		24,05	0,227	34,1	0,142
2		7,24	0,190	11,5	0,110
4		1,92	0,140	3,00	0,070

- Problem of measured data: top and bottom row (#1 and #8) show crosstalk with the surrounding shield →
 - resolution calculated with all 8 rows too pessimistic (contains not perfect hits)
 - resolution calculated with only 6 inner rows too optimistic (relation between fit parameters and data points too small)
- Both values will be presented
- 8 rows deliver more conservative results (upper limit)

Point Resolution Studies: Introductory Remarks

- Cuts:
 - Angle: φ < 0.1 rad (5.73°)
 Θ < ~0.44 rad (25.0°)
 - Exclude outer columns: only hits taken into account with (*nearly*) complete charge measured
 - Minimum of 6 hits per track
- Gas mixtures: TDR (Ar-CH4-CO2: 93-5-2) P5 (Ar-CH4: 95-5)

diffusion coefficient D defocussing constant σ_0

 $\sigma = \sqrt{D z + \sigma_0}$

derive	derived from GARFIELD7 simulation (0ppm water content)			
	P5		TDR	
B (T)	D (mm) 10-4	$\sigma_{_0} (mm^2)$	D (mm) 10-4	$\sigma_{_0} (mm^2)$
0	571	0,288	202	0,180
1	24,05	0,227	34,1	0,142
2	7,24	0,190	11,5	0,110
4	1,92	0,140	3,00	0,070

- Problem of measured data: top and bottom row (#1 and #8) show crosstalk with the surrounding shield →
 - resolution calculated with all 8 rows too pessimistic (contains not perfect hits)
 - resolution calculated with only 6 inner rows too optimistic (relation between fit parameters and data points too small)
- Both values will be presented
- 8 rows deliver more conservative results (upper limit)

Point Resolution Studies: Introductory Remarks

- Cuts:
 - Angle: φ < 0.1 rad (5.73°)
 Θ < ~0.44 rad (25.0°)
 - Exclude outer columns: only hits taken into account with (*nearly*) complete charge measured
 - Minimum of 6 hits per track
- Gas mixtures: TDR (Ar-CH4-CO2: 93-5-2) P5 (Ar-CH4: 95-5)

diffusion coefficient D defocussing constant σ_0

$\sigma = \sqrt{D z + \sigma_0}$	
----------------------------------	--

	derive	derived from GARFIELD7 simulation (0ppm water content)			
		P5		TDR	
E	3 (T)	D (mm) 10-4	$\sigma_0^{}$ (mm ²)	D (mm) 10-4	$\sigma_0^{}$ (mm ²)
	0	571	0,288	202	0,180
	1	24,05	0,227	34,1	0,142
	2	7,24	0,190	11,5	0,110
	4	1,92	0,140	3,00	0,070

- Problem of measured data: top and bottom row (#1 and #8) show crosstalk with the surrounding shield →
 - resolution calculated with all 8 rows too pessimistic (contains not perfect hits)
 - resolution calculated with only inner 6 rows too optimistic (relation between fit parameters and data points too small)
- Both values will be presented
- 8 rows deliver more conservative results (upper limit)

Chi Squared - With PRC

Global Fit - Sigma free

Global Fit - Sigma fixed

staggered

П

0

Δ

gas: TDR (Ar-CH₄-CO₂:93-5-2), pads: 2.2×6.2 mm²

Chi Squared - With PRC

Global Fit - Sigma free

Global Fit - Sigma fixed

Resolution Goal (TESLA-TDR)

500

600

600

Page 4 / 9

Point Resolution: TDR gas, 4T, 8 rows

non-staggered

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

esolution X [mm]

Point Resolution Results: TDR gas

- Deviation between non-staggered and staggered results ← charge sharing too small
- Especially at short drift distances: results from staggered layout affected by charge sharing limit
- Results for 6 rows unreasonably good esp. Global Fit with free σ

Ralf Diener, Hamburg University

Resolution: ~ 120-180 μ m (Z = 0-660 mm)

Point Resolution Results: P5 gas

- Again deviation between non-staggered and staggered results, but here smaller ← charge sharing too small
- Some results from staggered layout also increase at short drift distances, but much less (no big drift dependence of width)
- Results for 6 rows a bit better than for 8, but spread of results smaller for 8 rows
 - Resolution: ~ 120-170 µm (Z = 0-660 mm)

DES

-i C

Monte Carlo Simulation

- Working Principle
 - Cosmic muons with realistic angular and energy spectra
 - Detector and trigger geometry
 - Primary ionization simulated with HEED → 3D e⁻ distribution
 - Drift: Gaussian position smearing Parameters from GARFIELD
 - GEM amplification:

properties: mixture, pressure,

Gas

B-field

ŵ

- · Electrons forced in nearest hole
- Effective gain applied with Polya distributed smearing
- · Drift between GEMs as above
- Collection on pad plane and readout
- Simulation for P5 gas, staggered pad layout and up to 19 rows available

Performance:
 Red: Monte Carlo / Blue: Data

Page 6 / 9

iC

Monte Carlo Simulation

- Working Principle
 - Cosmic muons with realistic angular and energy spectra
 - Detector and trigger geometry
 - Primary ionization simulated with HEED → 3D e⁻ distribution
 - Drift: Gaussian position smearing Parameters from GARFIELD
 - GEM amplification:

properties: mixture, pressure,

as

Ű

B-field

ŵ

- · Electrons forced in nearest hole
- Effective gain applied with Polya distributed smearing
- · Drift between GEMs as above
- Collection on pad plane and readout
- Simulation for P5 gas, staggered pad layout and up to 19 rows available
 - Ralf Diener, Hamburg University 💾

Performance: Red: Monte Carlo / Blue: Data

Page 6 / 9

Influence of the Number of Rows

- Chi Squared Method:
 - 6 rows in comparison too good (impact of charge sharing and binning effect in Monte Carlo result in step at ~300mm: 2→3 pads per hit)
 - 8 rows already reasonable
 - 19 rows results show expected shape and are comparable with Global Fit results for 19 rows

- Global Fit with free σ :
 - 6 rows unreasonably good
 - 8 and 19 rows tend to more reasonable results
- Global Fit with fixed σ:
 - results conservative and scale with increasing number of rows
- Both flavors comparable at 19 rows

Influence of the Dead Channels

- 8 rows with dead channels (same 5 channels that were damaged in the corresponding measurement run)
- Chi Squared stable at low charge sharing, but deviation up to 20 µm at longer drift (strong step from binning effect in MC: at ~300 mm step from 2→3 pads per hit)
- Global Fit results also worsened up to 20-30 µm

Conclusion and Outlook

- Both the Chi Squared and the Global Fit Method seem to be applicable
- Chi Squared Method more stable at smaller number of rows
- Global Fit Method with free σ produces better resolution results, while with fixed σ it produces stable but conservative results
- Global Fit needs more CPU time
- The achieved resolution (~120-180 µm) is still quite far from the requirements, but there is a lot of room for improvement:
 - Pad size, number of rows, dead channels, ... (and gas mixture, amplification setup etc.)
- Point resolution below 100 µm seems achievable with adequate setup
- Setup with new pad plane is being built at the moment:
 - Pad pitch = 1.27 x 6.985 mm², 14 rows
- New measurements start beginning 2007

Appendix

MultiFit: Hit Reconstruction

- Find pulses in raw data:
 - detect pulses by threshold
 - time: inflexion point of rising slope
- Separation of pulses:
 - Change in slope (ignore variations in the order of noise)
- Combine pulses to hits:
 - start with biggest pulse
 - use recursive method in a time window
 - add the pulse if it is smaller
 - take care of damaged pads
 - calculate hit coordinates
 - x: center of gravity (charge)
 - y: center of the row
 - z: error weighted mean of time of pulses

MultiFit: Track Finder

- First track hypothesis from two points -> fit straight track search in a time window for a hit in the next row
- 2) After adding the hit:
 - re-fit the track with new hit
 - repeat this procedure in the next row...
- 3) ... until reaching the last row.
 - To avoid false tracks:
 - only small gaps
 - minimal number of hits

a: SlopeX

:le

Track Fitting: Chi Squared Method

- **Straight line** x = f(y) = ay + b
- **2nd degree polynomial:** $x = f(y) = a y^2 + b y + c$
 - rotated coordinate system

Radius $R = \frac{a}{2}$, Curvature $C = \frac{1}{R}$

Center $(x_0, y_0) \rightarrow$ solve equation system: $(x-x_0)^2+(y-y_0)^2=R^2$ for 2 points $(x_1, y_1), (x_2, y_2)$

- **Circular arc:** $(x-x_0)^2 + (y-y_0)^2 = R^2$
 - rotated coordinate system
 - initialized with results from polynomial method
 - Fit function:

$$x = f(y) = x_0 \pm \sqrt{\frac{1}{C^2} - (y - y_0)^2}$$

Chi Squared Fit Method: PRF Correction (PRC)

 Pad Response Function (PRF): not enough charge sharing → Center of Gravity method reconstructs hit towards the pad with the highest signal

 Correction of the PRF by function depending on charge cloud width

Reconstruction Methods

....

 \longrightarrow needs diffusion and defocussing coefficients as input (*MAGBOLTZ* simulation))

PRC Implementation in MultiFit

Pad Response Function (Gaussian charge cloud)

$$Q_{pad}(y) = \int_{-\infty}^{+\infty} \left(\Theta(\psi - \frac{\Delta}{2}) * \Theta(-\psi + \frac{\Delta}{2}) \right) \times \left(\frac{Q_{max}}{\sqrt{2\pi} \sigma_s} * \exp\left[\frac{-(y - \psi)^2}{2 \sigma_s^2} \right] \right) d\psi$$

Pad Response Correction

$$F_{noflat} = P_1 x + P_2 \sqrt{x} + \left(\frac{1 - P_1}{2} - \frac{P_2}{\sqrt{2}}\right) \cdot \sqrt[3]{2x}$$
$$F_{flat} = P_0 x + P_2 \sqrt{x} + \left(\frac{1 - 2P_0}{2} - \frac{P_2}{\sqrt{2}}\right) \cdot \sqrt[3]{2x}$$

- Parameters: dependent on width σ
 - fit appropriate polynomials to the parameter curves
 - polynomials implemented in MultiFit needed input: diffusion and defocussing coefficients

Reconstruction Methods

Global Fit Method: Basics

- Assumptions:
 - In each row the track can be described by a straight line

Pa	C
curved	
of real track	
assumption: straight	
in each row	

 XY track fit uses a Gaussian model for charge cloud

- Three (four) parameter fit:
 - Intercept X₀ (x at y=0)
 - Azimuthal angle
 - Width of the charge cloud (can be fixed: calculated dependent on drift length per track and per row from diffucion and defocussing coefficient)
 - Curvature C (in case of curved track hypothesis)

-iC

Global Fit Method: Principle

• Likelihood function describing charge deposition per pad:

$$L_{i} = p_{i}^{n_{i}}, \text{ with } n_{i} = \frac{N_{i}}{G} : \text{number of primary } e^{-}, N_{i}$$

$$G : \text{gain factor}$$
and
$$p_{i} = \frac{Q_{\exp}}{\sum_{n=1}^{pads/row} Q_{\exp}}$$
(probability function)

Product of likelihood functions of all pads:

Global Fit Method: Noise Value

 In original, Canadian implementation (JTPC): no clustering → problems with noise pulses

 To make fit more robust, assign a higher probability for measuring a signal to all pads by introducing a constant offset: noise value N

