

Simulation Studies of a GEM-based TPC at the ILC

Astrid Münnich

Martin Killenberg Sven Lotze Joachim Mnich Stefan Roth Michael Weber

III. Physikalisches Institut B

ILC-ECFA Workshop Valencia November 2006

RNTHAACHEN

Astrid Münnich

Simulation Studies of a GEM-based TPC at the ILC

Simulation Studies

4 Modules:

- 1. Primary ionisation
- 2. Drift of electrons
- 3. Gas amplification with GEMs
- 4. Electronics (shaper, ADC)

Goals: Study influence on the spatial resolution of a TPC of

- Electric and magnetic fields
- GEM settings
- Pad response, pad geometry
- Ion backdrift

Creating Primary Ionisation

- HEED: Simulation tool for primary ionisation:
- \rightarrow Parametrisation of:
 - Number of cluster per cm
 - Number of electrons per cluster
 - **Range and energie of** δ **-electrons**

Creating a Track

- Randomly choose distance to next cluster (exponential)
- Choose # of e⁻ in this cluster
- Position e^- on track (B=0: straight line, B \neq 0: helix)
- δ -electrons with angle to track + multiple scattering

Drifting of Electrons

Parametrise gas properties simulated with MAGBOLTZ

Dice coordinates after drifting according to longitudinal and transverse diffusion

RWITH AACHEN

Astrid Münnich

Simulation Studies of a GEM-based TPC at the ILC

Amplification with GEMs (1)

From measurements:

- Parametrisation of charge transfer in triple GEM structure: collection, gain, extraction
- Charge broadening

 only due to diffusion
 between GEMs
 → Simulate diffusion
 with Magboltz

Amplification with GEMs (2)

- Calculate number of secondary e⁻ from charge transfer combined with binomial statistics
- Integrate over 2D gaussian with sigma of charge cloud to get charge on pads
 → Voxel information: charge on channel c at time t

Elektronik: Shaping und ADC

- Determine center of gravity of charge in time
- Apply shaping function (Gaussian at the moment)
- Fill electrons into time bins by integrating over every ADC bin
- Normalise charge with ADC range

Charge Spectrum

$1.27 \times 6.985 \text{ mm}^2$ Pads, TDR Gas, 0T, DESY Testbeam

Resolution in x at 0T

$1.27 \times 6.985 \text{ mm}^2$ Pads, TDR + P5 Gas, 0T, DESY Testbeam

Resolution in x at 4T

$1.27 \times 6.985 \text{ mm}^2$ Pads, TDR Gas, 4T, DESY Magnet

Resolution in z

8 bit ADC, 12.5 MHz, P5 Gas, 0T, DESY Testbeam

Momentum Resolution ILC TPC

$1.0 \times 7.0 \text{ mm}^2$ Pads, 4T, $R_{\rm TPC}$ = 1680 mm, $L_{\rm TPC}$ = 2500 mm

Ion backdrift in ILC TPC (1)

One ion slice per bunch train mainly due to background

Ion backdrift in ILC TPC (2)

Back drifting ions from pad plane

RNTHAACHEN

Astrid Münnich

Ion backdrift in ILC TPC (3)

Radial distribution of charge from 100 BX pair background

Conclusion

Advantages:

- Simulation independent from large simulation packages
- Amplification with GEMs (accounts for different settings)
- Magnetic fields and 3D tracks possible
- Many input parameters for systematic studies

Outlook:

- Systematic studies for ILC TPC
- Find parametrisation of detailed studies to use in full detector simulation in MOKKA