

Status Report DEPFET Active Pixel Sensors for the ILC

Laci Andricek

for the DEPFET Collaboration (<u>www.depfet.org</u>)

Outline

- The new Switcher
- System Performance Beam Test
- Improving the DEPFET Pixel Cell New Production
- Thinning Technology Latest Results
- Summary

Switcher 3 Layout (submitted 16.8.06)

Main features:

- 128 channels
- Radiation Hardness
- 10V swing

- ⇒ use ≤ 0.35µm technology ('3.3V') with enclosed layouts etc. ⇒ use stacked transistors
- 'zero' standby current ⇒ use ac coupling in 'level shifters'
- Flexible sequencer
- Pad geometry for bump bonding (gold stud for prototypes)
- Minimum number of control / power signals

fu	II chi	p:
5.8 x	1.24	mm ²

slim enough to fit on the "balcony" of the ladder

Results of Test Chip SW3T

- Test chip with various switch designs has been submitted and tested.
- High voltage technology (AMS H35, 4M) has been used to separate wells.

No (significant) threshold shift or leakage current for annular structures!!

- :- 5 test beam periods have been done in the past
 - $3 \times (2000 \text{ DESY})$ spatial resolution limited by multiple scattering to ~6µm for us.
 - 2 x @ CERN (120 GeV π) August and October 2006. Analysis in progress...
- :- Reference system is the 4 layer Silicon strip telescope (Bonn) (double sided strip detectors, 50 µm pitch)
- :- Sensors are

450µm thick (mip = 36ke)

min. pixel size = **33x23.75µm**²

various DEPFET variations have been studied

:- Speed:

Clearing in 20ns

Sample-clear-sample in CURO: ~ 240 ns (This would give a 4 MHz row rate)

Non-zero suppressed readout (mostly)~ 800 μ s/frame (128 rows) \rightarrow ~ 6 μ s/row

In the recent CERN test beam, a **beam telescope of 5 DEPFET planes**

has been successfully operated!

ECFA Workshop, Valencia, November 2006

- Mostly use 'baseline' linear DEPFET geometry
- Build larger matrices
 - Long matrices (full ILC drain length) Wide matrices (full Load for Switcher Gate / Clear chips)
- Try new DEPFET variants:

reduce **clear voltages** (modified implantations, modified geometry) Very **small** pixels (20µm x 20µm)

- Increase internal amplification (g_a)
- Add some bump bonding test structures

Roadmap Subway map towards a thin demonstrator

	2006	2007	2008	2009	2010
DEPFET incl. rad. tolerance	PXD5		PXD6		
Thinning					
chips/system development	CURO3		CURO4 ?		full size
	SWITCHER3		SWITCHER4 ?		demonstrator
thin					•
Me./El. Samples					•
interconnections on & off module					•
					•
Engineering module/barrels/ discs					•

- ✓ Matrices operated 'routinely' in test beams at DESY and CERN including a 5 layer DEPFET telescope.
- ✓ New **Switcher** submitted (rad. hard, ready for bump bonding, fast: 9V in 10ns @ 20pF).
- ✓ New sensor production with '**full size devices**' has started. Expect it back middle 2007.
- Thinning technology migrated to main HLL lab with excellent results using commercial vendors. Full ILC size diode structures are under way.

Unfortunately I had to skip the entire **work related to simulations**. The LDC VTX detector using "allsilicon" DEPFET ladders is now implemented in MOKKA and the results are extremely nice.

Also not mentioned is the **proton irradiation at LBNL**, which **confirmed the radiation tolerance** of the DEPFETs up to 1e12 p/cm² and 300 krad. These single pixel structures are now in Munich waiting for evaluation of their spectroscopic performance after irradiation.

The DEPFET is well under way towards a full size thin demonstrator by 2010!

- A potential minimum for electrons is created under
 - the channel by sideward depletion
- Electrons are collected in the "internal gate" and modulate the transistor current
- Signal charge is removed via a clear contact

- Fast signal collection in fully depleted bulk
- Low noise due to small capacitance and internal amplification
- Transistor can be switched off by external gate charge collection is then still active!

halbleiterlabo

ECFA Workshop, Valencia, November 2006

Ladislav Andricek, MPI für Physik, HLL

Clear Efficiency

- Study mini matrix devices in laser setup
- Scan wide parameter space of Clear Gate and Clear Voltage
- Study various designs, geometries (length of clear gate) and operating conditions (static or clocked clear gate)

Complete clear achieved with static clear gate ! Required voltages are small (5-7V) – very important for future SWITCHER

Fast Clearing

Complete clear in only 10-20 ns @ ΔV_{clear} = 11-7 V

DEPFET ladders (and TB modules) implemented in MOKKA

including:

- E_{loss} fluctuations in thin layers
- Charge transport, sharing & diffusion
- Lorentz angle (33° @ 4T)
- Electronic noise 100 e- (goal for ILC), resp. 230e- (test beam)

Simulation: LDC Geometry description

Sensitive layer thickness = 50 μ m Pixel size = 25×25 μ m²

	Radius	Ladders	Length (cm)
1	1.5	8	10.0
2	2.6	8	2 imes 12.5
3	3.8	12	2×12.5
4	4.9	16	2×12.5
5	6.0	20	2 imes 12.5

Material up to first layer : beam pipe (500 µm beryllium)

