NNLO SQCD corrections to the Neutralino pole masses in the MSSM

R. SCHÖFBECK (HEPHY, VIENNA)

IN COLLABORATION WITH THE VIENNA SUSY GROUP: H. Eberl, W. Majerotto, K. Kovařík, Ch. Weber

ILC-ECFA, VALENCIA, 2006

• Analysis of combined experimental results done by the LHC/LC Study Group calls for NNLO pole mass calculation to match experimental standards

[G. Weiglein et al., 2004]

• Analysis of combined experimental results done by the LHC/LC Study Group calls for NNLO pole mass calculation to match experimental standards

[G. Weiglein et al., 2004]

ACCURACY FROM EXPERIMENT AT LHC + ILC

Particle	Mass	"LHC"	"ILC"	"LHC+ILC"
$ ilde{\chi}_1^0$	97.7	4.8	0.05	0.05
$ ilde{\chi}_2^0$	183.9	4.7	1.2	0.08
$\tilde{\chi}_1^{\pm}$	183.7		0.55	0.55
\widetilde{q}_R	547.2	7 - 12	—	5 - 11
\widetilde{q}_L	564.7	8.7	—	4.9
\widetilde{g}	607.1	8.0	—	6.5

[SPA, J. A. Aguilar-Saavedra et al., 2005], all numbers in GeV

NEUTRALINO MASS MATRIX AT TREE LEVEL

$$Y = \begin{pmatrix} M_1 & 0 & -M_Z \cos\beta\sin\theta_W & M_Z \sin\beta\sin\theta_W \\ 0 & M_2 & M_Z \cos\beta\cos\theta_W & -M_Z \sin\beta\cos\theta_W \\ -M_Z \cos\beta\sin\theta_W & M_Z \cos\beta\cos\theta_W & 0 & -\mu \\ M_Z \sin\beta\sin\theta_W & -M_Z \sin\beta\cos\theta_W & -\mu & 0 \end{pmatrix}$$
$$M_D = N^* Y N^{\dagger} = \operatorname{diag}(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_4^0}, m_{\tilde{\chi}_4^0})$$

NEUTRALINO MASS MATRIX AT TREE LEVEL

$$Y = \begin{pmatrix} M_1 & 0 & -M_Z \cos\beta\sin\theta_W & M_Z \sin\beta\sin\theta_W \\ 0 & M_2 & M_Z \cos\beta\cos\theta_W & -M_Z \sin\beta\cos\theta_W \\ -M_Z \cos\beta\sin\theta_W & M_Z \cos\beta\cos\theta_W & 0 & -\mu \\ M_Z \sin\beta\sin\theta_W & -M_Z \sin\beta\cos\theta_W & -\mu & 0 \end{pmatrix}$$
$$M_D = N^* Y N^{\dagger} = \operatorname{diag}(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_3^0}, m_{\tilde{\chi}_4^0})$$

RENORMALIZED 2-POINT FUNCTION $\Gamma^{(2)\tilde{\chi}^0\tilde{\chi}^0}$

$$\begin{split} G^{(2)-1}_{\tilde{\chi}^0\tilde{\chi}^0} &= -i\Gamma^{(2)\tilde{\chi}^0\tilde{\chi}^0} = -i\left(\begin{array}{cc} -M_D + \hat{\Sigma}^{LL}_m(s) & \sigma \cdot k(1 + \hat{\Sigma}^R_k(s)) \\ \bar{\sigma} \cdot k(1 + \hat{\Sigma}^L_k(s)) & -M^{\dagger}_D + \hat{\Sigma}^{RR}_m(s) \end{array}\right) \\ s &= k^2 \end{split}$$

POLE MASS CONDITION

$$0 = \det\left(s - \left(M_D - \hat{\Sigma}_m^{LL}(s)\right) \cdot \left(1 + \hat{\Sigma}_k^L(s)\right)^{-1} \cdot \left(M_D^{\dagger} - \hat{\Sigma}_m^{RR}(s)\right) \cdot \left(1 + \hat{\Sigma}_k^R(s)\right)^{-1}\right)$$

POLE MASS CONDITION

$$0 = \det\left(s - \left(M_D - \hat{\Sigma}_m^{LL}(s)\right) \cdot \left(1 + \hat{\Sigma}_k^L(s)\right)^{-1} \cdot \left(M_D^{\dagger} - \hat{\Sigma}_m^{RR}(s)\right) \cdot \left(1 + \hat{\Sigma}_k^R(s)\right)^{-1}\right)$$

Iterative solution to order $\alpha \alpha_S$

$$s_{i,pole} = m_{\tilde{\chi}_{i}^{0}}^{2} - \delta m_{\tilde{\chi}_{i}^{0}}^{2(1)} - \delta m_{\tilde{\chi}_{i}^{0}}^{2(2)}$$

$$\delta m_{\tilde{\chi}_{i}^{0}}^{2(1)} = \hat{\Sigma}_{m}^{(1)LL}(m_{\tilde{\chi}_{i}^{0}}^{2}) + \hat{\Sigma}_{m}^{(1)RR}(m_{\tilde{\chi}_{i}^{0}}^{2}) + \hat{\Sigma}_{k}^{(1)L}(m_{\tilde{\chi}_{i}^{0}}^{2}) + \hat{\Sigma}_{k}^{(1)R}(m_{\tilde{\chi}_{i}^{0}}^{2})$$

$$\delta m_{\tilde{\chi}_{i}^{0}}^{2(2)} = \hat{\Sigma}_{m}^{(2)LL}(m_{\tilde{\chi}_{i}^{0}}^{2}) + \hat{\Sigma}_{m}^{(2)RR}(m_{\tilde{\chi}_{i}^{0}}^{2}) + \hat{\Sigma}_{k}^{(2)L}(m_{\tilde{\chi}_{i}^{0}}^{2}) + \hat{\Sigma}_{k}^{(2)R}(m_{\tilde{\chi}_{i}^{0}}^{2})$$

REGULARIZATION SCHEME: \overline{DR}'

REGULARIZATION SCHEME: \overline{DR}'

 \bullet dimensional reduction in $d=4-\epsilon$

<u>Regularization scheme:</u> \overline{DR}'

- \bullet dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ -scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

REGULARIZATION SCHEME: \overline{DR}'

- \bullet dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ -scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

SIMPLIFICATION: DEGENERATE SQUARKS FOR EACH FAMILY SEPARATELY

REGULARIZATION SCHEME: \overline{DR}'

- \bullet dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ -scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

SIMPLIFICATION: DEGENERATE SQUARKS FOR EACH FAMILY SEPARATELY

• trilinear breaking terms:
$$A_g^u = \mu \cot \beta$$
, $A_g^d = \mu \tan \beta$

REGULARIZATION SCHEME: \overline{DR}'

- \bullet dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ -scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

SIMPLIFICATION: DEGENERATE SQUARKS FOR EACH FAMILY SEPARATELY

- trilinear breaking terms: $A_g^u = \mu \cot \beta$, $A_g^d = \mu \tan \beta$
- soft SUSY breaking masses $M^2_{\tilde{q},\tilde{u},\tilde{d}}$ are chosen such that the up-type sfermion mass matrix has degenerate eigenvalues $m^2_{\tilde{u},g}$. The down-type sfermion $m^2_{\tilde{d},q}$ masses then follow degenerate.

REGULARIZATION SCHEME: \overline{DR}'

- \bullet dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ -scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

SIMPLIFICATION: DEGENERATE SQUARKS FOR EACH FAMILY SEPARATELY

- trilinear breaking terms: $A_g^u = \mu \cot \beta$, $A_g^d = \mu \tan \beta$
- soft SUSY breaking masses $M^2_{\tilde{q},\tilde{u},\tilde{d}}$ are chosen such that the up-type sfermion mass matrix has degenerate eigenvalues $m^2_{\tilde{u},g}$. The down-type sfermion $m^2_{\tilde{d},q}$ masses then follow degenerate.

GAUGE: $R_{\xi=1}$

ONE LOOP DIAGRAMS

ONE LOOP DIAGRAMS

• use two-loop methods for evaluation of one-loop self-energies

ONE LOOP DIAGRAMS

- use two-loop methods for evaluation of one-loop self-energies
- compare analytic result to previous one-loop calculations [W. Öller '03, T. Fritzsche '04]

TWO LOOP DIAGRAMS

TWO LOOP DIAGRAMS

TENSOR REDUCTION

• aim: reduce complicated two-loop integral to a small set of basis integrals

- aim: reduce complicated two-loop integral to a small set of basis integrals
- O.V. Tarasov gave a complete set of recurrence relations involving the space time dimension as a recursion variable [O.V. Tarasov, '97]

- aim: reduce complicated two-loop integral to a small set of basis integrals
- O.V. Tarasov gave a complete set of recurrence relations involving the space time dimension as a recursion variable [O.V. Tarasov, '97]
- succesful implementation into the MATHEMATICA package TARCER away from kinematic thresholds [R. Mertig, R. Scharf, '98]

- aim: reduce complicated two-loop integral to a small set of basis integrals
- O.V. Tarasov gave a complete set of recurrence relations involving the space time dimension as a recursion variable [O.V. Tarasov, '97]
- succesful implementation into the MATHEMATICA package TARCER away from kinematic thresholds [R. Mertig, R. Scharf, '98]

$$\frac{\tilde{\chi}^{0}}{q} \xrightarrow{\tilde{q}}{q} \xrightarrow{\tilde{\chi}^{0}}{q} \xrightarrow{\tilde{\chi}^{0}}{s} \xrightarrow{\tilde{M}\tilde{M}} \frac{\bar{M}\tilde{M}}{s(q_{1}^{2} - m_{\tilde{q}}^{2})(q_{2}^{2} - m_{\tilde{q}}^{2})((p+q_{1})^{2} - m_{q}^{2})((p+q_{2})^{2} - m_{q}^{2})((p+q_{2})^{2} - m_{q}^{2})((p+q_{2})^{2} - m_{q}^{2})(q_{2} - q_{1})^{2}$$

$$= \frac{m_{q}^{2} \left((m_{q}^{2} - m_{\tilde{q}}^{2} - s)M(m_{q}, m_{q}, m_{\tilde{q}}, m_{\tilde{q}}, 0) - U(m_{q}, m_{\tilde{q}}, 0, m_{\tilde{q}}) + U(m_{\tilde{q}}, m_{q}, 0, m_{\tilde{q}}) \right)}{s}$$

EVALUATING BASIS INTEGRALS

EVALUATING BASIS INTEGRALS

• aim: evaluate scalar basis integrals for a set of arbitrary masses and external momentum

EVALUATING BASIS INTEGRALS

- aim: evaluate scalar basis integrals for a set of arbitrary masses and external momentum
- \bullet any two-point two-loop integral with definite mass dimensions n satisfies a scaling equation of the form

$$\left(s\frac{\mathrm{d}}{\mathrm{d}s} + \alpha_i \frac{\mathrm{d}}{\mathrm{d}\alpha_i} + Q^2 \frac{\mathrm{d}}{\mathrm{d}Q^2} - \frac{n}{2}\right) I(s, \alpha_i, Q) = 0$$

EVALUATING BASIS INTEGRALS

- aim: evaluate scalar basis integrals for a set of arbitrary masses and external momentum
- any two-point two-loop integral with definite mass dimensions n satisfies a scaling equation of the form

$$\left(s\frac{\mathrm{d}}{\mathrm{d}s} + \alpha_i \frac{\mathrm{d}}{\mathrm{d}\alpha_i} + Q^2 \frac{\mathrm{d}}{\mathrm{d}Q^2} - \frac{n}{2}\right) I(s, \alpha_i, Q) = 0$$

• get complete set of basis integrals at a given s by Runge-Kutta integration in the complex plane starting from s = 0 [S.P. Martin, '03]

EVALUATING BASIS INTEGRALS

- aim: evaluate scalar basis integrals for a set of arbitrary masses and external momentum
- any two-point two-loop integral with definite mass dimensions n satisfies a scaling equation of the form

$$\left(s\frac{\mathrm{d}}{\mathrm{d}s} + \alpha_i \frac{\mathrm{d}}{\mathrm{d}\alpha_i} + Q^2 \frac{\mathrm{d}}{\mathrm{d}Q^2} - \frac{n}{2}\right) I(s, \alpha_i, Q) = 0$$

- get complete set of basis integrals at a given s by Runge-Kutta integration in the complex plane starting from s = 0 [S.P. Martin, '03]
- \bullet realized in TSIL [S.P. Martin and D.G. Robertson, '05]

• FEYNARTS 3.2 for generation of the amplitudes (36 diagrams) [J.Küblbeck, T. Hahn, et. al, '90]

- FEYNARTS 3.2 for generation of the amplitudes (36 diagrams) [J.Küblbeck, T. Hahn, et. al, '90]
- \bullet conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces

- FEYNARTS 3.2 for generation of the amplitudes (36 diagrams) [J.Küblbeck, T. Hahn, et. al, '90]
- \bullet conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
- \bullet tensor reduction using \underline{TARCER}

- FEYNARTS 3.2 for generation of the amplitudes (36 diagrams) [J.Küblbeck, T. Hahn, et. al, '90]
- \bullet conversion to $F{}_{\rm EYN}C{}_{\rm ALC}$ 4.0.2 and evaluation of color and Dirac traces
- \bullet tensor reduction using $\ensuremath{\mathbf{TARCER}}$
- Taylor expansion of TARCER basis integrals in d 4 to TSIL basis integrals

- FEYNARTS 3.2 for generation of the amplitudes (36 diagrams) [J.Küblbeck, T. Hahn, et. al, '90]
- \bullet conversion to $F{}_{\rm EYN}C{}_{\rm ALC}$ 4.0.2 and evaluation of color and Dirac traces
- \bullet tensor reduction using $\ensuremath{\mathbf{TARCER}}$
- Taylor expansion of TARCER basis integrals in d 4 to TSIL basis integrals

NUMERICAL EVALUATION

- FEYNARTS 3.2 for generation of the amplitudes (36 diagrams) [J.Küblbeck, T. Hahn, et. al, '90]
- \bullet conversion to $F{}_{\rm EYN}C{}_{\rm ALC}$ 4.0.2 and evaluation of color and Dirac traces
- \bullet tensor reduction using $\ensuremath{\mathbf{TARCER}}$
- Taylor expansion of TARCER basis integrals in d 4 to TSIL basis integrals

NUMERICAL EVALUATION

• Creating FORTRAN code calling TSIL basis integrals and using some FORMCALC subroutines for calculating the SUSY spectra

- FEYNARTS 3.2 for generation of the amplitudes (36 diagrams) [J.Küblbeck, T. Hahn, et. al, '90]
- \bullet conversion to $F{\rm EYN}C{\rm ALC}$ 4.0.2 and evaluation of color and Dirac traces
- \bullet tensor reduction using $\ensuremath{\mathbf{TARCER}}$
- Taylor expansion of TARCER basis integrals in d 4 to TSIL basis integrals

NUMERICAL EVALUATION

- Creating FORTRAN code calling TSIL basis integrals and using some FORMCALC subroutines for calculating the SUSY spectra
- hit RETURN

Some more technical issues

• tensor reduction formulas can become extremly complicated, up to $\sim 1 MB$ per diagram \rightarrow code made reusable

- \bullet tensor reduction formulas can become extremly complicated, up to $\sim 1 MB$ per diagram \rightarrow code made reusable
- save all intermediate results

- \bullet tensor reduction formulas can become extremly complicated, up to $\sim 1 MB$ per diagram \rightarrow code made reusable
- save all intermediate results
- \bullet when large mass hierarchies are involved TSIL can become instable

- \bullet tensor reduction formulas can become extremly complicated, up to $\sim 1 MB$ per diagram \rightarrow code made reusable
- save all intermediate results
- \bullet when large mass hierarchies are involved TSIL can become instable
 - mostly, putting $m_q^{g=1,2} = 0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved

- \bullet tensor reduction formulas can become extremly complicated, up to $\sim 1 MB$ per diagram \rightarrow code made reusable
- save all intermediate results
- \bullet when large mass hierarchies are involved TSIL can become instable
 - mostly, putting $m_q^{g=1,2} = 0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved
 - sometimes it is necessary to invoke the non-basis (V-topology) integral provided by TSIL to make things stable

- tensor reduction formulas can become extremly complicated, up to $\sim 1 MB$ per diagram \rightarrow code made reusable
- save all intermediate results
- \bullet when large mass hierarchies are involved TSIL can become instable
 - mostly, putting $m_q^{g=1,2} = 0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved
 - sometimes it is necessary to invoke the non-basis (V-topology) integral provided by TSIL to make things stable
- when the masses are highly degenerate TARCER can fail to converge

- tensor reduction formulas can become extremly complicated, up to $\sim 1 MB$ per diagram \rightarrow code made reusable
- save all intermediate results
- \bullet when large mass hierarchies are involved TSIL can become instable
 - mostly, putting $m_q^{g=1,2} = 0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved
 - sometimes it is necessary to invoke the non-basis (V-topology) integral provided by TSIL to make things stable
- when the masses are highly degenerate TARCER can fail to converge
 - this is because multiple zeros in kinematical prefactors in the recursion can block the usual path of recursion

- \bullet tensor reduction formulas can become extremly complicated, up to $\sim 1 MB$ per diagram \rightarrow code made reusable
- save all intermediate results
- \bullet when large mass hierarchies are involved TSIL can become instable
 - mostly, putting $m_q^{g=1,2} = 0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved
 - sometimes it is necessary to invoke the non-basis (V-topology) integral provided by TSIL to make things stable
- when the masses are highly degenerate TARCER can fail to converge
 - this is because multiple zeros in kinematical prefactors in the recursion can block the usual path of recursion
 - a small in-house routine provides the necessary results at these special configurations

ANALYTIC CHECKS

• gauge parameter independence in general R_{ξ} gauges

- gauge parameter independence in general R_{ξ} gauges
- ullet explicit cancellation of m_ϵ contributions in $\overline{DR}\,'$

- gauge parameter independence in general R_{ξ} gauges
- explicit cancellation of m_ϵ contributions in \overline{DR} '
- IR finiteness by extraction of the IR divergent parts in each diagram

- gauge parameter independence in general R_{ξ} gauges
- explicit cancellation of m_ϵ contributions in \overline{DR} '
- IR finiteness by extraction of the IR divergent parts in each diagram
- highly non-trivial: RGE check (UV finiteness) on $tr(Y^{\dagger}Y) = tr(M_D^{\dagger}M_D)$

ANALYTIC CHECKS

- gauge parameter independence in general R_{ξ} gauges
- explicit cancellation of m_ϵ contributions in \overline{DR} '
- IR finiteness by extraction of the IR divergent parts in each diagram
- highly non-trivial: RGE check (UV finiteness) on $tr(Y^{\dagger}Y) = tr(M_D^{\dagger}M_D)$

CHECKS ON THE NUMERICS

• RGE check of mass shifts $\delta m_{ ilde{\chi}^0_i}$ against <code>Spheno</code> [W. Porod, '03]

ANALYTIC CHECKS

- gauge parameter independence in general R_{ξ} gauges
- explicit cancellation of m_ϵ contributions in \overline{DR} '
- IR finiteness by extraction of the IR divergent parts in each diagram
- highly non-trivial: RGE check (UV finiteness) on $tr(Y^{\dagger}Y) = tr(M_D^{\dagger}M_D)$

CHECKS ON THE NUMERICS

• RGE check of mass shifts $\delta m_{\tilde{\chi}^0_i}$ against SPHENO [W. Porod, '03]

CHECK ON THE WHOLE STRATEGY

• SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, '05]

Renormalization scale dependence

Example: dependence on $\tan \beta$

Example: dependence on μ

Example: dependence on gaugino mass parameters

 $\tilde{\chi}_1^0$

The next few steps

CONCERNING THIS CALCULATION

• include squark mixing

- include squark mixing
- include αy_t contributions

- include squark mixing
- include αy_t contributions
- full two-loop calculation is 2044 diagrams compared to 36 diagrams for NNLO SQCD
 - way faster analytic tools needed (at least very useful)
 - more efficient code needed (roughly 1sec/pp for this calculation now)

- include squark mixing
- include αy_t contributions
- full two-loop calculation is 2044 diagrams compared to 36 diagrams for NNLO SQCD
 - way faster analytic tools needed (at least very useful)
 - more efficient code needed (roughly 1sec/pp for this calculation now)

COMING UP NEXT

• NNLO SQCD corrections for charginos

- include squark mixing
- include αy_t contributions
- full two-loop calculation is 2044 diagrams compared to 36 diagrams for NNLO SQCD
 - way faster analytic tools needed (at least very useful)
 - more efficient code needed (roughly 1sec/pp for this calculation now)

COMING UP NEXT

- NNLO SQCD corrections for charginos
- two-loop gluino pole mass including massive vector bosons

- include squark mixing
- include αy_t contributions
- full two-loop calculation is 2044 diagrams compared to 36 diagrams for NNLO SQCD
 - way faster analytic tools needed (at least very useful)
 - more efficient code needed (roughly 1sec/pp for this calculation now)

COMING UP NEXT

- NNLO SQCD corrections for charginos
- two-loop gluino pole mass including massive vector bosons

• • • •

MOTIVATION:

MOTIVATION:

• high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]

MOTIVATION:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)

MOTIVATION:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code: FEYNARTS→FEYNCALC→TARCER FORTRAN, TSIL, LOOPTOOLS

MOTIVATION:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code: FEYNARTS→FEYNCALC→TARCER FORTRAN, TSIL, LOOPTOOLS

RESULTS:

MOTIVATION:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code: FEYNARTS→FEYNCALC→TARCER FORTRAN, TSIL, LOOPTOOLS

RESULTS:

• the remaining renormalization scale dependence is greatly improved

MOTIVATION:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code: FEYNARTS→FEYNCALC→TARCER FORTRAN, TSIL, LOOPTOOLS

RESULTS:

- the remaining renormalization scale dependence is greatly improved
- at the SPS1a' benchmark point the NNLO must be included

MOTIVATION:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code: FEYNARTS→FEYNCALC→TARCER FORTRAN, TSIL, LOOPTOOLS

RESULTS:

- the remaining renormalization scale dependence is greatly improved
- at the SPS1a' benchmark point the NNLO must be included
- many checks have been successful though it is clear that further (Yukawa) corrections are needed

Thank you for your attention