NNLO SQCD corrections to the Neutralino pole masses in the MSSM

R. Schöfbeck (HEPHY, Vienna)

in collaboration with the Vienna SUSY group:
H. Eberl, W. Majerotto, K. Kovařík, Ch. Weber

ILC-ECFA, VALENCIA, 2006

Introduction

- Analysis of combined experimental results done by the LHC/LC Study Group calls for NNLO pole mass calculation to match experimental standards
[G. Weiglein et al., 2004]

Introduction

- Analysis of combined experimental results done by the LHC/LC Study Group calls for NNLO pole mass calculation to match experimental standards
[G. Weiglein et al., 2004]
$\underline{\text { ACCURACY FROM EXPERIMENT AT LHC }+ \text { ILC }}$

Particle	Mass	"LHC"	"ILC"	"LHC+ILC"
$\tilde{\chi}_{1}^{0}$	97.7	4.8	0.05	0.05
$\tilde{\chi}_{2}^{0}$	183.9	4.7	1.2	0.08
$\tilde{\chi}_{1}^{ \pm}$	183.7		0.55	0.55
\tilde{q}_{R}	547.2	$7-12$	-	$5-11$
\tilde{q}_{L}	564.7	8.7	-	4.9
\tilde{g}^{2}	607.1	8.0	-	6.5

[SPA, J. A. Aguilar-Saavedra et al., 2005], all numbers in GeV

Pole masses in mixing fermion systems

Neutralino mass matrix at Tree Level

$$
Y=\left(\begin{array}{cccc}
M_{1} & 0 & -M_{Z} \cos \beta \sin \theta_{W} & M_{Z} \sin \beta \sin \theta_{W} \\
0 & M_{2} & M_{Z} \cos \beta \cos \theta_{W} & -M_{Z} \sin \beta \cos \theta_{W} \\
-M_{Z} \cos \beta \sin \theta_{W} & M_{Z} \cos \beta \cos \theta_{W} & 0 & -\mu \\
M_{Z} \sin \beta \sin \theta_{W} & -M_{Z} \sin \beta \cos \theta_{W} & -\mu & 0 \\
M_{D}=N^{*} Y N^{\dagger}=\operatorname{diag}\left(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\chi}_{3}^{0}}, m_{\tilde{\chi}_{4}^{0}}\right)
\end{array}\right)
$$

Pole masses in mixing fermion systems

Neutralino mass matrix at Tree Level

$$
Y=\left(\begin{array}{cccc}
M_{1} & 0 & -M_{Z} \cos \beta \sin \theta_{W} & M_{Z} \sin \beta \sin \theta_{W} \\
0 & M_{2} & M_{Z} \cos \beta \cos \theta_{W} & -M_{Z} \sin \beta \cos \theta_{W} \\
-M_{Z} \cos \beta \sin \theta_{W} & M_{Z} \cos \beta \cos \theta_{W} & 0 & -\mu \\
M_{Z} \sin \beta \sin \theta_{W} & -M_{Z} \sin \beta \cos \theta_{W} & -\mu & 0
\end{array}\right)
$$

$$
M_{D}=N^{*} Y N^{\dagger}=\operatorname{diag}\left(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\chi}_{3}^{0}}, m_{\tilde{\chi}_{4}^{0}}\right)
$$

RENORMALIZED 2-POINT FUNCTION $\Gamma^{(2) \tilde{\chi}^{0} \tilde{\chi}^{0}}$

$$
\begin{aligned}
& G_{\tilde{\chi}^{0} \tilde{\chi}^{0}}^{(2)-1}=-i \Gamma^{(2) \tilde{\chi}^{0} \tilde{\chi}^{0}}=-i\left(\begin{array}{cc}
-M_{D}+\hat{\Sigma}_{m}^{L L}(s) & \sigma \cdot k\left(1+\hat{\Sigma}_{k}^{R}(s)\right) \\
\bar{\sigma} \cdot k\left(1+\hat{\Sigma}_{k}^{L}(s)\right) & -M_{D}^{\dagger}+\hat{\Sigma}_{m}^{R R}(s)
\end{array}\right) \\
& s=k^{2}
\end{aligned}
$$

Pole masses in mixing fermion systems

POLE MASS CONDITION

$$
0=\operatorname{det}\left(s-\left(M_{D}-\hat{\Sigma}_{m}^{L L}(s)\right) \cdot\left(1+\hat{\Sigma}_{k}^{L}(s)\right)^{-1} \cdot\left(M_{D}^{\dagger}-\hat{\Sigma}_{m}^{R R}(s)\right) \cdot\left(1+\hat{\Sigma}_{k}^{R}(s)\right)^{-1}\right)
$$

Pole masses in mixing fermion systems

POLE MASS CONDITION

$$
0=\operatorname{det}\left(s-\left(M_{D}-\hat{\Sigma}_{m}^{L L}(s)\right) \cdot\left(1+\hat{\Sigma}_{k}^{L}(s)\right)^{-1} \cdot\left(M_{D}^{\dagger}-\hat{\Sigma}_{m}^{R R}(s)\right) \cdot\left(1+\hat{\Sigma}_{k}^{R}(s)\right)^{-1}\right)
$$

$\underline{\text { ITERATIVE SOLUTION TO ORDER } \alpha \alpha_{S}}$

$$
\begin{aligned}
s_{i, p o l e} & =m_{\tilde{\chi}_{i}^{0}}^{2}-\delta m_{\tilde{\chi}_{i}^{0}}^{2(1)}-\delta m_{\tilde{\chi}_{i}^{0}}^{2(2)} \\
\delta m_{\tilde{\chi}_{i}^{0}}^{2(1)} & =\hat{\Sigma}_{m}^{(1) L L}\left(m_{\tilde{\chi}_{i}^{0}}^{2}\right)+\hat{\Sigma}_{m}^{(1) R R}\left(m_{\tilde{\chi}_{i}^{0}}^{2}\right)+\hat{\Sigma}_{k}^{(1) L}\left(m_{\tilde{\chi}_{i}^{0}}^{2}\right)+\hat{\Sigma}_{k}^{(1) R}\left(m_{\tilde{\chi}_{i}^{0}}^{2}\right) \\
\delta m_{\tilde{\chi}_{i}^{0}}^{2(2)} & =\hat{\Sigma}_{m}^{(2) L L}\left(m_{\tilde{\chi}_{i}^{0}}^{2}\right)+\hat{\Sigma}_{m}^{(2) R R}\left(m_{\tilde{\chi}_{i}^{0}}^{2}\right)+\hat{\Sigma}_{k}^{(2) L}\left(m_{\tilde{\chi}_{i}^{0}}^{2}\right)+\hat{\Sigma}_{k}^{(2) R}\left(m_{\tilde{\chi}_{i}^{0}}^{2}\right)
\end{aligned}
$$

Technicalities of perturbative expansion

Regularization scheme: $\overline{D R^{\prime}}$

Technicalities of perturbative expansion

REGULARIZATION SCHEME: $\overline{D R}{ }^{\prime}$

- dimensional reduction in $d=4-\epsilon$

Technicalities of perturbative expansion

REGULARIZATION SCHEME: $\overline{D R}{ }^{\prime}$

- dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ-scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

Technicalities of perturbative expansion

REGULARIZATION SCHEME: $\overline{D R}{ }^{\prime}$

- dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ-scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

SIMPLIFICATION: DEGENERATE SQUARKS FOR EACH FAMILY SEPARATELY

Technicalities of perturbative expansion

REGULARIZATION SCHEME: $\overline{D R}{ }^{\prime}$

- dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ-scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

SIMPLIFICATION: DEGENERATE SQUARKS FOR EACH FAMILY SEPARATELY

- trilinear breaking terms: $A_{g}^{u}=\mu \cot \beta, A_{g}^{d}=\mu \tan \beta$

Technicalities of perturbative expansion

REGULARIZATION SCHEME: $\overline{D R}{ }^{\prime}$

- dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ-scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

Simplification: DEGENERATE SQUARKS FOR EACH FAMILY SEPARATELY

- trilinear breaking terms: $A_{g}^{u}=\mu \cot \beta, A_{g}^{d}=\mu \tan \beta$
- soft SUSY breaking masses $M_{\tilde{q}, \tilde{u}, \tilde{d}}^{2}$ are chosen such that the up-type sfermion mass matrix has degenerate eigenvalues $m_{\tilde{u}, g}^{2}$. The down-type sfermion $m_{\tilde{d}, g}^{2}$ masses then follow degenerate.

Technicalities of perturbative expansion

REGULARIZATION SCHEME: $\overline{D R}{ }^{\prime}$

- dimensional reduction in $d=4-\epsilon$
- absorbing the ϵ-scalar mass parameter in the sfermion masses [S.P. Martin, 2001]

Simplification: DEGENERATE SQUARKS FOR EACH FAMILY SEPARATELY

- trilinear breaking terms: $A_{g}^{u}=\mu \cot \beta, A_{g}^{d}=\mu \tan \beta$
- soft SUSY breaking masses $M_{\tilde{q}, \tilde{u}, \tilde{d}}^{2}$ are chosen such that the up-type sfermion mass matrix has degenerate eigenvalues $m_{\tilde{u}, g}^{2}$. The down-type sfermion $m_{\tilde{d}, g}^{2}$ masses then follow degenerate.

GAUGE: $R_{\xi=1}$

The Diagrams

ONE LOOP DIAGRAMS

The Diagrams

ONE LOOP DIAGRAMS

- use two-loop methods for evaluation of one-loop self-energies

The Diagrams

ONE LOOP DIAGRAMS

- use two-loop methods for evaluation of one-loop self-energies
- compare analytic result to previous one-loop calculations [W. Öller '03, T. Fritzsche '04]

The Diagrams

TWO LOOP DIAGRAMS

The Diagrams

Two LOOP DIAGRAMS

degenerate squarks simplify tensor reduction

The Calculation

TENSOR REDUCTION

The Calculation

TENSOR REDUCTION

- aim: reduce complicated two-loop integral to a small set of basis integrals

The Calculation

TENSOR REDUCTION

- aim: reduce complicated two-loop integral to a small set of basis integrals
- O.V. Tarasov gave a complete set of recurrence relations involving the space time dimension as a recursion variable [0.V. Tarasov, '97]

The Calculation

TENSOR REDUCTION

- aim: reduce complicated two-loop integral to a small set of basis integrals
- O.V. Tarasov gave a complete set of recurrence relations involving the space time dimension as a recursion variable [O.V. Tarasov, '97]
- succesful implementation into the Mathematica package Tarcer
away from kinematic thresholds [R. Mertig, R. Scharf, '98]

The Calculation

TENSOR REDUCTION

- aim: reduce complicated two-loop integral to a small set of basis integrals
- O.V. Tarasov gave a complete set of recurrence relations involving the space time dimension as a recursion variable [O.V. Tarasov, '97]
- succesful implementation into the Mathematica package Tarcer away from kinematic thresholds [R. Mertig, R. Scharf, '98]

$$
\begin{aligned}
& \stackrel{\bar{M} \bar{M}}{s\left(q_{1}^{2}-m_{\tilde{q}}^{2}\right)\left(q_{2}^{2}-m_{\tilde{q}}^{2}\right)\left(\left(p+q_{1}\right)^{2}-m_{q}^{2}\right)\left(\left(p+q_{2}\right)^{2}-m_{q}^{2}\right)\left(q_{2}-q_{1}\right)^{2}} \\
& =\frac{m_{q}^{2} p \cdot\left(q_{1}+q_{2}\right)}{s}\left(\left(m_{q}^{2}-m_{\tilde{q}}^{2}-s\right) M\left(m_{q}, m_{q}, m_{\tilde{q}}, m_{\tilde{q}}, 0\right)-U\left(m_{q}, m_{\tilde{q}}, 0, m_{\tilde{q}}\right)+U\left(m_{\tilde{q}}, m_{q}, 0, m_{\tilde{q}}\right)\right) \\
&
\end{aligned}
$$

The Calculation

Evaluating Basis integrals

The Calculation

EVALUATING BASIS INTEGRALS

- aim: evaluate scalar basis integrals for a set of arbitrary masses and external momentum

The Calculation

EvALUATING BASIS INTEGRALS

- aim: evaluate scalar basis integrals for a set of arbitrary masses and external momentum
- any two-point two-loop integral with definite mass dimensions n satisfies
a scaling equation of the form

$$
\left(s \frac{\mathrm{~d}}{\mathrm{~d} s}+\alpha_{i} \frac{\mathrm{~d}}{\mathrm{~d} \alpha_{i}}+Q^{2} \frac{\mathrm{~d}}{\mathrm{~d} Q^{2}}-\frac{n}{2}\right) I\left(s, \alpha_{i}, Q\right)=0
$$

The Calculation

EvALUATING BASIS INTEGRALS

- aim: evaluate scalar basis integrals for a set of arbitrary masses and external momentum
- any two-point two-loop integral with definite mass dimensions n satisfies a scaling equation of the form

$$
\left(s \frac{\mathrm{~d}}{\mathrm{~d} s}+\alpha_{i} \frac{\mathrm{~d}}{\mathrm{~d} \alpha_{i}}+Q^{2} \frac{\mathrm{~d}}{\mathrm{~d} Q^{2}}-\frac{n}{2}\right) I\left(s, \alpha_{i}, Q\right)=0
$$

- get complete set of basis integrals at a given s by Runge-Kutta integration in the complex plane starting from $s=0$ [S.P. Martin, '03]

The Calculation

EvALUATING BASIS INTEGRALS

- aim: evaluate scalar basis integrals for a set of arbitrary masses and external momentum
- any two-point two-loop integral with definite mass dimensions n satisfies a scaling equation of the form

$$
\left(s \frac{\mathrm{~d}}{\mathrm{~d} s}+\alpha_{i} \frac{\mathrm{~d}}{\mathrm{~d} \alpha_{i}}+Q^{2} \frac{\mathrm{~d}}{\mathrm{~d} Q^{2}}-\frac{n}{2}\right) I\left(s, \alpha_{i}, Q\right)=0
$$

- get complete set of basis integrals at a given s by Runge-Kutta integration in the complex plane starting from $s=0$ [S.P. Martin, '03]
- realized in TSIL [S.P. Martin and D.G. Robertson, '05]

The Calculation

Evaluation and Simplification of Amplitudes

The Calculation

Evaluation and Simplification of Amplitudes

- FeynArts 3.2 for generation of the amplitudes (36 diagrams)
[J.Küblbeck, T. Hahn, et. al, '90]

The Calculation

Evaluation and Simplification of Amplitudes

- FeynArts 3.2 for generation of the amplitudes (36 diagrams)
[J.Küblbeck, T. Hahn, et. al, '90]
- conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces

The Calculation

Evaluation and Simplification of Amplitudes

- FeynArts 3.2 for generation of the amplitudes (36 diagrams)
[J.Küblbeck, T. Hahn, et. al, '90]
- conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
- tensor reduction using TARCER

The Calculation

Evaluation and Simplification of Amplitudes

- FeynArts 3.2 for generation of the amplitudes (36 diagrams)
[J.Küblbeck, T. Hahn, et. al, '90]
- conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
- tensor reduction using TARCER
- Taylor expansion of Tarcer basis integrals in $d-4$ to TSIL basis integrals

The Calculation

Evaluation and Simplification of Amplitudes

- FeynArts 3.2 for generation of the amplitudes (36 diagrams)
[J.Küblbeck, T. Hahn, et. al, '90]
- conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
- tensor reduction using TARCER
- Taylor expansion of Tarcer basis integrals in $d-4$ to TSIL basis integrals

Numerical Evaluation

The Calculation

Evaluation and Simplification of Amplitudes

- FeynArts 3.2 for generation of the amplitudes (36 diagrams)
[J.Küblbeck, T. Hahn, et. al, '90]
- conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
- tensor reduction using TARCER
- Taylor expansion of TARCER basis integrals in $d-4$ to TSIL basis integrals

Numerical Evaluation

- Creating Fortran code calling TSIL basis integrals and using some FormCalc subroutines for calculating the SUSY spectra

The Calculation

Evaluation and Simplification of Amplitudes

- FeynArts 3.2 for generation of the amplitudes (36 diagrams)
[J.Küblbeck, T. Hahn, et. al, '90]
- conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
- tensor reduction using TARCER
- Taylor expansion of TARCER basis integrals in $d-4$ to TSIL basis integrals

Numerical Evaluation

- Creating Fortran code calling TSIL basis integrals and using some FormCalc subroutines for calculating the SUSY spectra
- hit Return

The Calculation

SOME MORE TECHNICAL ISSUES

- tensor reduction formulas can become extremly complicated, up to $\sim 1 \mathrm{MB}$ per diagram \rightarrow code made reusable

The Calculation

SOME MORE TECHNICAL ISSUES

- tensor reduction formulas can become extremly complicated, up to $\sim 1 \mathrm{MB}$ per diagram \rightarrow code made reusable
- save all intermediate results

The Calculation

SOME MORE TECHNICAL ISSUES

- tensor reduction formulas can become extremly complicated, up to $\sim 1 \mathrm{MB}$ per diagram \rightarrow code made reusable
- save all intermediate results
- when large mass hierarchies are involved TSIL can become instable

The Calculation

SOME MORE TECHNICAL ISSUES

- tensor reduction formulas can become extremly complicated, up to $\sim 1 \mathrm{MB}$ per diagram \rightarrow code made reusable
- save all intermediate results
- when large mass hierarchies are involved TSIL can become instable
- mostly, putting $m_{q}^{g=1,2}=0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved

The Calculation

SOME MORE TECHNICAL ISSUES

- tensor reduction formulas can become extremly complicated, up to $\sim 1 \mathrm{MB}$ per diagram \rightarrow code made reusable
- save all intermediate results
- when large mass hierarchies are involved TSIL can become instable
- mostly, putting $m_{q}^{g=1,2}=0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved
- sometimes it is necessary to invoke the non-basis (V-topology) integral provided by TSIL to make things stable

The Calculation

SOME MORE TECHNICAL ISSUES

- tensor reduction formulas can become extremly complicated, up to $\sim 1 \mathrm{MB}$ per diagram \rightarrow code made reusable
- save all intermediate results
- when large mass hierarchies are involved TSIL can become instable
- mostly, putting $m_{q}^{g=1,2}=0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved
- sometimes it is necessary to invoke the non-basis (V-topology) integral provided by TSIL to make things stable
- when the masses are highly degenerate TARCER can fail to converge

The Calculation

SOME MORE TECHNICAL ISSUES

- tensor reduction formulas can become extremly complicated, up to $\sim 1 \mathrm{MB}$ per diagram \rightarrow code made reusable
- save all intermediate results
- when large mass hierarchies are involved TSIL can become instable
- mostly, putting $m_{q}^{g=1,2}=0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved
- sometimes it is necessary to invoke the non-basis (V-topology) integral provided by TSIL to make things stable
- when the masses are highly degenerate TARCER can fail to converge
- this is because multiple zeros in kinematical prefactors in the recursion can block the usual path of recursion

The Calculation

SOME MORE TECHNICAL ISSUES

- tensor reduction formulas can become extremly complicated, up to $\sim 1 \mathrm{MB}$ per diagram \rightarrow code made reusable
- save all intermediate results
- when large mass hierarchies are involved TSIL can become instable
- mostly, putting $m_{q}^{g=1,2}=0$ cures the instabilities without any noticable change in the regions where the integral is well-behaved
- sometimes it is necessary to invoke the non-basis (V-topology) integral provided by TSIL to make things stable
- when the masses are highly degenerate TARCER can fail to converge
- this is because multiple zeros in kinematical prefactors in the recursion can block the usual path of recursion
- a small in-house routine provides the necessary results at these special configurations

Checking the Result

Analytic Checks

Checking the Result

Analytic Checks

- gauge parameter independence in general R_{ξ} gauges

Checking the Result

Analytic Checks

- gauge parameter independence in general R_{ξ} gauges
- explicit cancellation of m_{ϵ} contributions in $\overline{D R}^{\prime}$

Checking the Result

Analytic Checks

- gauge parameter independence in general R_{ξ} gauges
- explicit cancellation of m_{ϵ} contributions in $\overline{D R}^{\prime}$
- IR finiteness by extraction of the IR divergent parts in each diagram

Checking the Result

Analytic Checks

- gauge parameter independence in general R_{ξ} gauges
- explicit cancellation of m_{ϵ} contributions in $\overline{D R}^{\prime}$
- IR finiteness by extraction of the IR divergent parts in each diagram
- highly non-trivial: RGE check (UV finiteness) on $\operatorname{tr}\left(Y^{\dagger} Y\right)=\operatorname{tr}\left(M_{D}^{\dagger} M_{D}\right)$

Checking the Result

Analytic Checks

- gauge parameter independence in general R_{ξ} gauges
- explicit cancellation of m_{ϵ} contributions in $\overline{D R}^{\prime}$
- IR finiteness by extraction of the IR divergent parts in each diagram
- highly non-trivial: RGE check (UV finiteness) on $\operatorname{tr}\left(Y^{\dagger} Y\right)=\operatorname{tr}\left(M_{D}^{\dagger} M_{D}\right)$

Checks on the Numerics

- RGE check of mass shifts $\delta m_{\tilde{\chi}_{i}^{0}}$ against Spheno [w. Porod, '03]

Checking the Result

Analytic Checks

- gauge parameter independence in general R_{ξ} gauges
- explicit cancellation of m_{ϵ} contributions in $\overline{D R}{ }^{\prime}$
- IR finiteness by extraction of the IR divergent parts in each diagram
- highly non-trivial: RGE check (UV finiteness) on $\operatorname{tr}\left(Y^{\dagger} Y\right)=\operatorname{tr}\left(M_{D}^{\dagger} M_{D}\right)$

Checks on the Numerics

- RGE check of mass shifts $\delta m_{\tilde{\chi}_{i}^{0}}$ against Spheno [w. Porod, '03]

CHECK ON THE WHOLE STRATEGY

- SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, '05]

Renormalization scale dependence

Example: dependence on $\tan \beta$

Example: dependence on μ

Example: dependence on gaugino mass parameters

The next few steps

CONCERNING THIS CALCULATION

- include squark mixing

The next few steps

CONCERNING THIS CALCULATION

- include squark mixing
- include αy_{t} contributions

The next few steps

CONCERNING THIS CALCULATION

- include squark mixing
- include αy_{t} contributions
- full two-loop calculation is 2044 diagrams compared to 36 diagrams for NNLO SQCD
- way faster analytic tools needed (at least very useful)
- more efficient code needed (roughly $1 \mathrm{sec} / \mathrm{pp}$ for this calculation now)

The next few steps

CONCERNING THIS CALCULATION

- include squark mixing
- include αy_{t} contributions
- full two-loop calculation is 2044 diagrams compared to 36 diagrams for NNLO SQCD
- way faster analytic tools needed (at least very useful)
- more efficient code needed (roughly $1 \mathrm{sec} / \mathrm{pp}$ for this calculation now)

COMING UP NEXT

- NNLO SQCD corrections for charginos

The next few steps

CONCERNING THIS CALCULATION

- include squark mixing
- include αy_{t} contributions
- full two-loop calculation is 2044 diagrams compared to 36 diagrams for NNLO SQCD
- way faster analytic tools needed (at least very useful)
- more efficient code needed (roughly $1 \mathrm{sec} / \mathrm{pp}$ for this calculation now)

COMING UP NEXT

- NNLO SQCD corrections for charginos
- two-loop gluino pole mass including massive vector bosons

The next few steps

CONCERNING THIS CALCULATION

- include squark mixing
- include αy_{t} contributions
- full two-loop calculation is 2044 diagrams compared to 36 diagrams for NNLO SQCD
- way faster analytic tools needed (at least very useful)
- more efficient code needed (roughly $1 \mathrm{sec} / \mathrm{pp}$ for this calculation now)

COMING UP NEXT

- NNLO SQCD corrections for charginos
- two-loop gluino pole mass including massive vector bosons
- . .

Conclusion

Motivation:

Conclusion

Motivation:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]

Conclusion

Motivation:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)

Conclusion

Motivation:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code:

FeynArts \rightarrow FeynCalc \rightarrow TARCER
Fortran, TSIL, Loop Tools

Conclusion

Motivation:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code:

FeynArts \rightarrow FeynCalc \rightarrow Tarcer Fortran, TSIL, LoopTools

Results:

Conclusion

Motivation:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code:

FeynArts \rightarrow FeynCalc \rightarrow Tarcer Fortran, TSIL, LoopTools

Results:

- the remaining renormalization scale dependence is greatly improved

Conclusion

Motivation:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code:

FeynArts \rightarrow FeynCalc \rightarrow Tarcer Fortran, TSIL, LoopTools

Results:

- the remaining renormalization scale dependence is greatly improved
- at the SPS1a' benchmark point the NNLO must be included

Conclusion

Motivation:

- high precision experiments demand pole mass calculations in the Neutralino sector to two-loop order [LHC/LC Study Group]
- combining existing software packages and some computational effort it was possible to calculate the leading NNLO corrections (SQCD)
- auto-generated code:

FeynArts \rightarrow Feyncalc \rightarrow TARCER Fortran, TSIL, LoopTools

Results:

- the remaining renormalization scale dependence is greatly improved
- at the SPS1a' benchmark point the NNLO must be included
- many checks have been successful though it is clear that further (Yukawa) corrections are needed

Thank you for your attention

