NNLO correction to $\bar{B} \rightarrow X_s \gamma$

Matthias Steinhauser

in collaboration with Mikolaj Misiak

and

H. M. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, T. Ewerth, A. Ferroglia, P. Gambino, M. Gorbahn,

C. Greub, U. Haisch, A. Hovhannisyan, T. Hurth, A. Mitov, V. Poghosyan, M. Ślusarczyk

Linear Collider Workshop, November 2006, Valencia

Why $\bar{B} \to X_s \gamma$?

•
$$\Gamma(\bar{B} \to X_s \gamma) \approx \Gamma(b \to X_s^{\text{parton}} \gamma)$$

= $\Gamma(b \to s\gamma) + \Gamma(b \to s\gamma g) + \dots$

sensitive to "new physics"

NLO & Experiment

Universität Karlsruhe (TH)

orschungsuniversität · gegründet 1825

Structure of theory prediction

$$\mathcal{B}(\bar{B} \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}} = \mathcal{B}(\bar{B} \to X_c e \bar{\nu})|_{\exp} \left(\frac{\Gamma(b \to s \gamma)}{\Gamma(b \to c e \bar{\nu})}\right)_{\text{LO}} f\left(\frac{\alpha_s(M_W)}{\alpha_s(m_b)}\right) \times \left\{1 + \mathcal{O}(\alpha_s) + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha) + \text{non-pert. corr.}\right\}$$

Structure of theory prediction

 $\mathcal{B}(\bar{B} \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}} = \mathcal{B}(\bar{B} \to X_c e \bar{\nu})|_{\exp} \left(\frac{\Gamma(b \to s \gamma)}{\Gamma(b \to c e \bar{\nu})}\right)_{\mathsf{I}} \int f\left(\frac{\alpha_s(M_W)}{\alpha_s(m_b)}\right) \times$ $\left\{1 + \mathcal{O}(\alpha_s) + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha) + \text{non-pert. corr.} \right\}$ NNLO: $\sim 10\%$ NLO: $\sim 30\%$ $\sim 4\%$ $\mathcal{O}\left(\frac{\Lambda^2}{m_b^2}\right) \sim 1\%$ $\mathcal{O}\left(\frac{\Lambda^2}{m_c^2}\right) \sim 3\%$ $\mathcal{O}\left(\frac{\Lambda}{m_b}\alpha_s\right) \sim 5\%$

niversität Karlsruhe (TH)

rschungsuniversität · gegründet 1825

Effective theory

- resummation of logarithms $\left(\alpha_s \ln \frac{M_W^2}{m_b^2}\right)^n$ necessary
- Calculation has to be done in the framework of an effective theory:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}\times\text{QED}} + \frac{4G_F}{\sqrt{2}} V_{ts}^{\star} V_{tb} \sum_{i} C_i(\mu) O_i(\mu)$$

Iniversität Karlsruhe (TH)

orschungsuniversität · gegründet 1825

Three Steps

2. Matrix elements: on-shell $b \rightarrow s\gamma$ amplitude, $\langle s\gamma | O_i | b \rangle$ $\mu \approx m_b$

3. Mixing:

effective theory RGE $C_i(\mu \sim M_W) \rightarrow C_i(\mu \sim m_b)$ resum large logarithms $\left(\alpha_s \ln \frac{m_b^2}{M_W^2}\right)^n$

niversität Karlsruhe (TH) schungsuniversität • gegründet 1825

Preparation for NNLO

1. Matching

- **9** 3-loop matching, O_7 , O_8
- 2. Matrix elements
- $O_1, O_2, O_7, O_8,$ large β_0
- $\bigcirc O_7$
- \square O_7 , photon spectrum
- $O_1, O_2, interpolation$

2. Mixing

J 3-loop: (O_1, \ldots, O_6) and (O_7, O_8) sectors

- [Gorbahn, Haisch'05],
- [Gorbahn, Haisch, Misiak'05]
- [Czakon, Haisch, Misiak, in progress]

● 4-loop: $(O_1, \ldots, O_6) \to (O_7, O_8)$

[Misiak, MS'04]

[Bieri,Greub,MS'03]

[Blokland,Czarnecki,Misiak,Ślusarczyk,Tkachov'05]

[Melnikov,Mitov'05], [Asatrian,Ewerth,Ferroglia,Gambino,Greub'06]

[Misiak, MS'06]

Decomposing the branching ratio

$$\mathcal{B}[\bar{B} \to X_s \gamma]_{E_{\gamma} > E_0} = \mathcal{B}[\bar{B} \to X_c e \bar{\nu}]_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[P(E_0) + N(E_0) \right]$$
$$N(E_0): \text{non-pert. part}$$

$$P(E_0) = P^{(0)} + \frac{\alpha_s}{4\pi} \left(P_1^{(1)} + P_2^{(1)}(z) \right) + \left(\frac{\alpha_s}{4\pi} \right)^2 \left(P_1^{(2)} + P_2^{(2)}(z) + P_3^{(2)}(z) \right) + \dots$$
$$z = \frac{m_c(m_c)}{m_b^{1S}}$$

$$P_1^{(1)}, P_3^{(2)} \sim C_i^{(0)} C_j^{(1)} \qquad P_2^{(1)}, P_2^{(2)} \sim C_i^{(0)} C_j^{(0)} \qquad P_1^{(2)} \sim C_i^{(0)} C_j^{(2)}, C_i^{(1)} C_j^{(1)}$$

$$\begin{array}{ccc} P_2^{(1)}(\textbf{\textit{z}}) \text{ and } P_3^{(2)} \vdots & \text{known} \\ P_2^{(2)\beta_0} \vdots & \text{known} \\ P_2^{(2)} \vdots & \text{interpolation} \end{array}$$

m_c dependence of $P_2^{(2)}$ and $P_3^{(2)}$

m_c dependence of $P_2^{(2)}$ and $P_3^{(2)}$

ersität Karlsruhe (TF

Dependence on the renormalization scales

LO, NLO, NNLO

default values: $\mu_c = 1.224 \text{ GeV}$ $\mu_b = m_b^{1S}/2 = 2.35 \text{ GeV}$ $\mu_0 = 2M_W$

NNLO: average of case (a) and (b)

Matthias Steinhauser, $ar{B} \,
ightarrow \, X_{\, \mathcal{S}} \, \gamma$ to NNLO – p.10

NNLO Prediction

$$\mathcal{B}(\bar{B} \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$$

[Misiak et al.'06], [Misiak,MS'06]

NNLO Prediction

$$\mathcal{B}(\bar{B} \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$$

[Misiak et al.'06], [Misiak,MS'06]

Decomposition of uncertainty:

non-pert., $\mathcal{O}\left(\frac{\Lambda}{m_b}\alpha_s\right)$ 5%parametric3% m_c interpolation3%higher order3%

6 (See, e.g., [Lee,Neubert,Paz'06]
6
$$\alpha_s(M_Z)$$
, $\mathcal{B}_{\mathrm{SL}}^{\mathrm{exp}}$, m_c , ...

NLO & Experiment

NNLO & Experiment

Very recently: -3% cutoff-related effect announced for $E_0 = 1.6$ GeV [Becher,Neubert'06]

Bounds on M_H^+ (2HDM)

schungsuniversität · gegründet 1825

Bound on M_H^+ (2)

Conclusions

- NNLO corrections for $\bar{B} \to X_s \gamma$: $\mathcal{B}(\bar{B} \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$
- dominant uncertainty:
 - non-perturbative: 5%
 - m_c interpolation: 3%
- $\sim 1.5\sigma$ deviation from experimental result
- **•** 2HDM: $M_{H^+} > 295$ GeV 95% CL

$\mathcal{B}(\bar{B} \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}}$ to NNLO

$$\mathcal{B}(\bar{B} \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$$

[Misiak et al.'06], [Misiak,Steinhauser'06]