Two-Loop Fermionic Corrections to Bhabha Scattering

Stefano Actis

DESY, Zeuthen

in collaboration with M.Czakon, J.Gluza and T.Riemann

Valencia November 2006

The Bhabha scattering at the ILC

- Luminosity at e^-/e^+ colliders $\Leftrightarrow \mathcal{L} = \mathcal{N}_{bh}/\sigma_{bh-th}$
- * two regions $\Rightarrow \sigma_{bh}$ large
 - ILC \Rightarrow small angle (SABS)
 - $-1 10 \text{ GeV} \Rightarrow \text{large angle} (\text{LABS})$

 σ_{bh-th} (SA and LA) is essential for the ILC

- SABS \rightarrow luminosity
- LABS \rightarrow low-energy luminosity \rightarrow hadronic corrections to $\alpha(p^2)$

QED massive corrections

- σ_{bh} SA (high *E*) / LA (low *E*) QED dominated \rightarrow 2L QED corrections (massive)
- electron-loop \Rightarrow analytic [Bonciani-Ferroglia-Mastrolia-Remiddi-van der Bij] (2004)
 - photonic ⇒ analytic
 [Bonciani-Ferroglia] (2005)
 - * except for two-loop boxes \Rightarrow approximated

$$\frac{d\sigma_2}{d\sigma_0} = \delta_2^{(2)} \ln^2\left(\frac{s}{m_e^2}\right) + \delta_2^{(1)} \ln\left(\frac{s}{m_e^2}\right) + \delta_2^{(0)} + \mathcal{O}\left(\frac{m_e^2}{s}\right)$$

* electron mass $\neq 0 \rightarrow MC$ event generators (BHLUMI, BABAYAGA,...)

Three goals

1. cross-check of the fermionic corrections

 \Rightarrow [Bonciani-Ferroglia-Mastrolia-Remiddi-van der Bij] (2004)

diagrammatic approach: reduction to MI + differential equations + Mellin-Barnes

- 2. allow for other flavours
- 3. cross-check of the two-loop photonic box corrections

 \Rightarrow [Glover-Tausk-van der Bij] (2001), [Penin] (2005)

logarithmic corrections

<u>massless</u> result [Bern-Dixon-Ghinculov] (2000) $\Rightarrow \ln(m_e^2/s) \Leftrightarrow$ IF poles in DR

 \neq diagrammatic approach \Rightarrow exact

Reduction to Master Integrals

- $\mathcal{M}_2 \Rightarrow \mathcal{M}_0^{\star} \mathcal{M}_2 \Rightarrow \sum_s \mathcal{M}_0^{\star} \mathcal{M}_2 \Rightarrow$ scalar integrals
- Idsolver (Czakon) implementation of the Laporta algorithm
 ⇒ reduction to 8 MI [Czakon-Gluza-Riemann] (2004)

[hep-ph:0412164] \rightarrow two methods

Method I: analytical results through Mellin-Barnes representation

 \rightarrow wave-function renormalization

1. MB representation

$$\int_{c-i\infty}^{c+i\infty} dz \ R^{z+\epsilon} \ \frac{\prod \Gamma(\ldots)}{\prod \Gamma(\ldots)} \qquad d = 4 - 2\epsilon \qquad R = m_e^2/m_\mu^2$$

- 2. $\epsilon = \epsilon_0 \rightarrow \text{analytic continuation} \rightarrow \epsilon = 0 [Smirnov/Tausk] (1999)$ automatization by [Anastasiou-Daleo + Czakon] (2005)
- 3. loop integral \Leftrightarrow sum over residua

MB: exact results

• harmonic sums (generalized)

Summer [Vermaseren] - XSummer [Moch-Uwer] - nestedsums [Weinzierl]

• more scales $(m_f \neq m_e) \Rightarrow$ inverse binomial sums

$$\sum_{i=1}^{\infty} \frac{1}{\binom{2i}{i}} \frac{u^i}{(i+1/2)} S_1(i) \qquad u = m_e^2/m_f^2$$

- * [Davydychev-Kalmykov] (2004)
- * [Weinzierl] (2004)
- \rightarrow extract analytically all the UV and IF residues
- \rightarrow cross-check all the exact electron-loop corrections

finite parts $m_f \neq m_e \Rightarrow$ asymptotic expansions

MB: asymptotic expansions

. . .

• MB representation (after resolution of ϵ singularities)

$$\int_{c-i\infty}^{c+i\infty} dz \ R^z \ \frac{\prod \Gamma(\ldots)}{\prod \Gamma(\ldots)} \qquad R = m_e^2/m_\mu^2$$

• [Roth-Denner] (1996) \Rightarrow asymptotic expansions for one-loop integrals

close to the right \Rightarrow poles z = n + residue 1st pole $(n = 0) \rightarrow R^0$ + residue 2nd pole $(n = 1) \rightarrow R^1$ Method II: numerical evaluation through dispersion relations

[Bauberger-Berends-Böhm-Buza] (1994) $I \to \underbrace{B_0(s:M^2,M^2)B_0(m^2;\underline{m^2},0)}_{(k_1^2-m^2)^2(k_1-n_2)^2} + \int dk_1 \frac{B_0[(p_1+k_1)^2;M^2,M^2] - B_0(s;M^2,M^2)}{(k_1^2-m^2)^2(k_1-n_2)^2}$ sina $B_0[(p_1+k_1)^2;\ldots] - B_0(s;\ldots) = \frac{1}{\pi} \int_{AM^2}^{\infty} d\sigma \mathsf{Im} B_0(\sigma;M^2,M^2) \left[\frac{1}{\sigma - (p_1+k_1)^2} - \frac{1}{\sigma - s} \right]$ $\Rightarrow \frac{1}{\pi} \int_{4M^2}^{\infty} d\sigma \mathrm{Im}B_0(\sigma; M^2, M^2) \left[C_0(m^2, s, m^2; \underline{m}^2, 0, \sigma) + \frac{B_0(m^2; \underline{m}^2, 0)}{\sigma - s} \right]$

numerical integration

Results for fermion-loop corrections

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} + \left(\frac{\alpha}{\pi}\right) \frac{d\sigma_1}{d\Omega} + \left(\frac{\alpha}{\pi}\right)^2 \frac{d\sigma_2}{d\Omega}$$

$$\frac{d\sigma_2}{d\Omega} \Rightarrow \sum_{\text{spin}} \left[\left(\underbrace{\bullet} - \underbrace{\bullet} - \underbrace{\bullet} \right)^* \times \underbrace{\bullet} + \text{c.c.} + \text{c.c.} + \cdots \right]$$

$$+ \left(\underbrace{\bullet} - \underbrace{\bullet} - \underbrace{\bullet} \right)^* \times \underbrace{\bullet} + \text{c.c.} + \cdots \right]$$

- electron loops → complete agreement with the exact result of [Bonciani-Ferroglia-Mastrolia-Remiddi-van der Bij] (2004)
- heavy-lepton loops \rightarrow approx. analytical result neglecting m_e^2/m_f^2 , m_e^2/s , m_f^2/s + numerical cross check (dispersion integrals)

Example: vertex form factor

$$F_{V,f}^{(2)}(t) = \frac{1}{6} \left\{ \frac{1}{6} \left(\frac{3355}{36} + 19\,\zeta_2 - 12\,\zeta_3 \right) - \left(\frac{265}{36} + \zeta_2 \right) L(R_f) + \frac{25}{12} L^2(R_f) \right. \\ \left. - \frac{1}{6} L^3(R_f) + \left[\frac{265}{36} + \zeta_2 - \frac{19}{6} L(R_f) + L^2(R_f) \right] L_e(t) \right. \\ \left. + \frac{1}{2} \left[\frac{19}{6} - L(R_f) \right] L_e^2(t) + \frac{1}{6} L_e^3(t) \right\}$$

Summary

- Small-angle Bhabha scattering \Rightarrow luminosity monitor at ILC
- Two-loop available corrections:
- Bonciani, Ferroglia *et al* \Rightarrow **non-approximated electron-loop**
- Glover-Tausk-van der Bij + Penin \Rightarrow approximated photonic ($\mathcal{O}(m_e^2/s)$)
- <u>Goal</u>: independent cross-check + improvement Actis, Czakon, Gluza, Riemann
- fermionic corrections ⇒ agreement with Bonciani, Ferroglia *et al* + heavy-lepton (muons, taus) loops allowed
- photonic corrections \Rightarrow exact result ?

Mellin-Barnes method + summation techniques for non-planar double-box diagrams