Precision calculations for

$\mathrm{H} \rightarrow \mathrm{WW} / \mathrm{ZZ} \rightarrow 4$ fermions with PROPHECY4F

Stefan Dittmaier MPI Munich

in collaboration with A. Bredenstein, A. Denner and M.M. Weber

based on PRD74 (2006) 013004 [hep-ph/0604011] and MPP-2006-138 (in preparation)

Contents

1 Introduction - the decays $\mathrm{H} \rightarrow \mathrm{WW} / \mathrm{ZZ} \rightarrow 4$ fermions

2 Calculation of EW and QCD corrections

3 Selection of numerical results

4 Conclusions

1 Introduction - the decays $\mathbf{H} \rightarrow \mathbf{W W} / Z Z \rightarrow 4$ fermions
ATLAS '03

Importance of decays $\mathrm{H} \rightarrow \mathrm{WW}^{(*)} / \mathrm{ZZ}^{(*)}$ at the LHC:
LHC: - most important Higgs decay channels for $M_{\mathrm{H}} \gtrsim 125 \mathrm{GeV}$

- most precise determination of M_{H} via $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 l$ for $M_{\mathrm{H}} \gtrsim 130 \mathrm{GeV}$

ILC: - measurements of branching ratios at per-cent level

- full reconstruction of $\mathrm{H} \rightarrow$ WW in semileptonic / hadronic final states

Theoretical description of $\mathrm{H} \rightarrow \mathrm{WW}^{(*)} / \mathrm{ZZ}^{(*)}$:

- previous work on partial decay widths:
$\diamond \mathcal{O}(\alpha)$ corrections to $\mathrm{H} \rightarrow$ WW/ZZ with stable W's/Z's
Fleischer, Jegerlehner '81; Kniehl '91; Bardin, Vilenskii, Khristova '91
\diamond lowest-order predictions for $\mathrm{H} \rightarrow \mathrm{WW}^{(*)} / \mathrm{ZZ}^{(*)}$ e.g. by Hdecay (Djouadi, Kalinowski, Spira '98)
- however: proper description of distributions required
\diamond for the kinematical reconstruction of Z's, W's, and H
(including radiative corrections, in particular γ radiation)
\hookrightarrow invariant-mass distributions
\diamond for the verification of spin 0 and CP parity of the Higgs boson
Nelson '88; Soni, Xu '93; Chang et al.'93;
\hookrightarrow angular and invariant-mass distributions Skjold, Osland '93; Barger et al.'93;
Arens, Sehgal '94; Buszello et al.'02; Choi et al.'O'
\Rightarrow Monte Carlo generator for $\mathrm{H} \rightarrow \mathrm{WW} / \mathrm{ZZ} \rightarrow 4 f$ with corrections needed
Recent work and work in progress:
- PROPHECY4F: generator for $\mathrm{H} \rightarrow \mathrm{WW} / \mathrm{ZZ} \rightarrow 4 f$ with EW and QCD corrections

Bredenstein, Denner, S.D., Weber '06

- generator for $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 l$ with QED corrections

[^0]
2 Calculation of EW and QCD corrections

Survey of Feynman diagrams

Lowest order:

Electroweak $\mathcal{O}(\alpha)$ corrections:

typical one-loop diagrams: \# diagrams $=\mathcal{O}(200-400)$
pentagons
vertices

boxes

+ photon bremsstrahlung (final-state radiation only)

QCD corrections to semileptonic or hadronic final states:

Possible Born diagrams:
(1)
(2)
diagrams (2) only for $q \bar{q} q \bar{q}$ and $q \bar{q} q^{\prime} \bar{q}^{\prime}$ final states ($q^{\prime}=$ weak-isospin partner of q)

Classification of QCD corrections into four categories: (typical diagrams shown)
(a)

(a) = correction to W/Z decays

(b,c,d) $=$ corrections to interferences (only for $q \bar{q} q \bar{q}$ and $q \bar{q} q^{\prime} \bar{q}^{\prime}$ final states)

Comments on the calculation of corrections

- Main complications in the loop calculation:
\diamond gauge-invariant treatment of W and Z resonances
\hookrightarrow "complex-mass scheme"
Denner, S.D., Roth, Wieders '05
\diamond numerical instabilities in Passarino-Veltman reduction of tensor integrals
\hookrightarrow new reduction methods developed
Denner, S.D. '05
New concepts already used in $\mathcal{O}(\alpha)$ correction to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 4 f$
Denner, S.D., Roth, Wieders '05
- Features of PROPHECY4F:
$\diamond \mathcal{O}(\alpha)$ and $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ calculation to all channels $\mathrm{H} \rightarrow \mathrm{WW} / \mathrm{ZZ} \rightarrow 4 f$
\diamond improved Born approximation for simplified evaluation
\diamond final-state radiation beyond $\mathcal{O}(\alpha)$ via structure functions
\diamond multi-channel Monte Carlo integration (checked by VEGAS)
Berends, Kleiss, Pittau '94; Kleiss, Pittau '94
\diamond still to be done: unweighted events, interface to parton showers

Numerical evaluation of one-loop integrals
Passarino-Veltman reduction of tensor to scalar integrals
\hookrightarrow inverse Gram determinants of external momenta
\hookrightarrow serious numerical instabilities where $\operatorname{det}(G) \rightarrow 0$ (at phase-space boundary but not only !)

Our solutions: Denner, S.D., NPB734 (2006) 62 [hep-ph/0509141]

- 1- and 2-point integrals \rightarrow stable direct calculation
- 3- and 4-point integrals \rightarrow two hybrid methods
(i) Passarino-Veltman \oplus seminumerical method \oplus analytical special cases
(ii) Passarino-Veltman \oplus expansions in small Gram and other kin. determinants
- 5-(and 6-)point integrals
\hookrightarrow stable reduction to lower-point integrals without Gram determinants
\Rightarrow Techniques ready for further applications (dim. regularization for IR singularities possible; complex masses supported)

Practical experience
\hookrightarrow Power + reliability of techniques can only be assessed via non-trivial applications !

Checks:

- UV structure of virtual corrections
\hookrightarrow independence of reference mass μ of dimensional regularization
- IR structure of virtual + soft-photonic corrections
\hookrightarrow independence of $\ln m_{\gamma} \quad$ ($m_{\gamma}=$ infinitesimal photon mass)
- mass singularities of virtual + related collinear photonic corrections
\hookrightarrow independence of $\ln m_{f_{i}} \quad$ ($m_{f_{i}}=$ small masses of external fermions)
- gauge invariance of amplitudes with $\Gamma_{\mathrm{W}}, \Gamma_{\mathrm{Z}} \neq 0$
\hookrightarrow identical results in ’t Hooft-Feynman and background-field gauge
Denner, S.D., Weiglein '94
- real corrections
\hookrightarrow squared amplitudes compared with MADGRAPH
Stelzer, Long '94
- combination of virtual and real corrections
\hookrightarrow identical results with two-cutoff slicing and dipole subtraction
Catani, Seymour '96; S.D. '00; Bredenstein, S.D., Roth '05
- two completely independent calculations of all ingredients !

3 Selection of numerical results

3.1 Leptonic final states

Partial decay width for $\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \nu_{\mathrm{e}} \mathrm{e}^{+} \mu^{-} \bar{\nu}_{\mu} \quad G_{\mu}$-scheme

Comparison with HDecay

Note: peak structure in Hdecay is an artefact of the on-shell approximation above threshold.

Partial decay width for $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow \mathrm{e}^{-} \mathrm{e}^{+} \mu^{-} \mu^{+} \quad G_{\mu}$-scheme

Comparison with HDecay

Note: peak structure in Hdecay is an artefact of the on-shell approximation above threshold.

Invariant-mass distribution for the \mathbf{Z} boson in $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow \mathrm{e}^{-} \mathrm{e}^{+} \mu^{-} \mu^{+}$ G_{μ}-scheme

Bredenstein, Denner,

γ recombination if $M_{\mathrm{e} \gamma / \mu \gamma}<5 \mathrm{GeV}$
Large corrections from photon radiation in Z reconstruction

Angle between decay planes for $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow \mathrm{e}^{-} \mathrm{e}^{+} \mu^{-} \mu^{+} \quad G_{\mu}$-scheme
$\frac{\mathrm{d} \Gamma}{\mathrm{d} \phi}\left[\frac{\mathrm{MeV}}{\mathrm{deg}}\right] \quad \mathrm{H} \rightarrow \mathrm{e}^{-} \mathrm{e}^{+} \mu^{-} \mu^{+}$
0.003

Distribution in the transverse angle between e^{+}and μ^{-}in $\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \nu_{\mathrm{e}} \mathrm{e}^{+} \mu^{-} \bar{\nu}_{\mu}$ G_{μ}-scheme

No significant distortion of shape by electroweak corrections

3.2 Semileptonic and hadronic final states

EW corrections: very similar for leptonic, semileptonic, and hadronic final states QCD corrections: only type (a) significant (=corrections to W/Z decays)

$\delta[\%]$	$\mathrm{H} \rightarrow q q q q$	Bredenstein, Denner,
S.D., Weber '06		

$\delta_{\mathrm{QCD}}^{\text {semileptonic }} \approx \frac{\alpha_{\mathrm{s}}}{\pi}=3.8 \%, \quad \delta_{\mathrm{QCD}}^{\text {hadronic }} \approx \frac{2 \alpha_{\mathrm{s}}}{\pi}=7.6 \%$,

Angle between decay planes for $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow \mathrm{e}^{-} \mathrm{e}^{+} q q \quad G_{\mu}$-scheme

$$
\delta[\%] \quad \mathrm{H} \rightarrow \mathrm{eeqq}
$$

$$
\cos \phi=\frac{\left(\mathbf{p}_{2 \mathrm{jets}} \times \mathbf{p}_{\mathrm{e}^{-}}\right)\left(\mathbf{p}_{\mathrm{jet} 1} \times \mathbf{p}_{\mathrm{jet} 2}\right)}{\left|\mathbf{p}_{2 \mathrm{jets}} \times \mathbf{p}_{\mathrm{e}}-\| \mathbf{p}_{\mathrm{jet} 1} \times \mathbf{p}_{\mathrm{jet} 2}\right|}
$$

4 Conclusions

Higgs decays $\mathrm{H} \rightarrow \mathrm{WW} / \mathrm{ZZ} \rightarrow 4 f$ are important for

- Higgs discovery at the LHC and precision Higgs studies at the ILC
- confirmation of Higgs quantum numbers (spin, CP) via differential distributions

NEW: PROPHECY4F - a generator for $\mathrm{H} \rightarrow \mathrm{WW} / \mathrm{ZZ} \rightarrow 4 f$ including

- full $\mathcal{O}(\alpha)$ EW and $\mathcal{O}\left(\alpha_{s}\right)$ QCD corrections
$\diamond \mathrm{W}$ and Z resonances treated within the complex-mass scheme
\diamond tensor reduction numerically stabilized via seminumerical or expansion methods
- universal corrections beyond $\mathcal{O}(\alpha)$ (FSR via structure functions, large- M_{H} effects)

First results of PROPHECY4F on $\mathrm{H} \rightarrow \mathrm{WW} / \mathrm{ZZ} \rightarrow 4 f$

- partial decay widths: EW corrections of $\mathcal{O}(8 \%)$ for $M_{\mathrm{H}} \lesssim 500 \mathrm{GeV}$ (reproduced by a simple improved Born approximation within $\lesssim 2 \%$ for $M_{\mathrm{H}} \lesssim 400 \mathrm{GeV}$)
- angular distributions: EW corrections of $\mathcal{O}(5-10 \%)$ distort shapes
- invariant-mass distributions of W's and Z's:

EW corrections of some 10% distort shapes (depend on inclusiveness of γ radiation)

- QCD corrections can be associated with W/Z decay (interference effects negligible)

[^0]: Carloni-Calame et al.

