

GDE (RDR) Update Nick Walker ILC-GDE DESY

<u>ilr</u>

Contents

- The Last Year in Perspective
 - Summary of what has happened since Frascati GDE meeting November 2005
- From Vancouver to Valencia
 - Cost reduction exercise and design changes
- RDR schedule up to Beijing
 - The last 100m
- Global R&D
 - The 'S' task forces

The Last Year in Perspective

One year after Frascati

• Frascati 12/05:

Snowmass Baseline Configuration (BC) consolidated and ratified

- BC officially placed under <u>Change Control Board</u> (CCB) control
- Many technical "details" poorly specified (or missing)

Bangalore 03/06

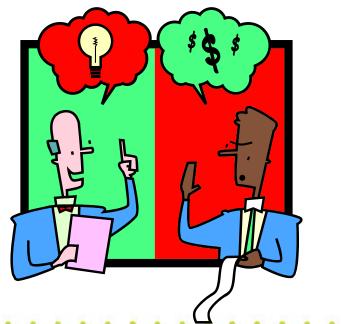
Detailed design reviewed and iterated; planning for cost estimation

- RDR Management Board formed Barish, Bialowons, Garbincius, Raubenheimer, Shidara, Walker (chair), Yokoya
- Weekly videoconferences across <u>Area</u> and <u>Technical</u> <u>System</u> (AS/TS) set-up
- Cost guidelines for TS developed (ETA Value / CERN Core)

One year after Frascati

- Vancouver 07/06 Major Goals Achieved after 7 months:
 - Detailed conceptual design
 - 90% of cost estimate (WBS) available

Our first look at the total project cost


• Valencia 11/06

Original goal: presentation of 1st draft RDR with cost

ilr

Producing the Design and Cost Estimate

i!?	Area Sys	<u>tems</u>				
IIL	e- source	e+ source	Damping Rings	RTML	Main Linac	BDS
RDR		Kiriki	Gao Guiducci	ES Kim	Hayano Lilje	Yamamoto Angal-Kalinir
matrix	Brachmann Logachev	Sheppard	Wolski Zisman	Tenenbaum	Adolphsen Solyak	Seryi

Technical Systems			
Vacuum systems	Suetsugu	Michelato	Noonan
Magnet systems	Sugahara	Bondachuk	Thomkins
Cryomodule	Ohuchi	Pagani	Carter
Cavity Package	Saito	Proch	Mammosser
RF Power	Fukuda		Larsen
Instrumentation	Urakawa	Burrows	Ross
Dumps/Collimators	Ban	Densham	Markiewicz
Acc. Physics	Kubo	Schulte	

Global Systems

Ops. & Avail.	Teranuma	Elsen	Himel	
Controls	Michizono	Simrock	Carwardine	
Cryogenics	Hosoyama	Tavian	Peterson	
CF&S	Enomoto	Baldy	Kuchler	
Installation	Shidara	Bialwons	Asiri	
		UIUNAI	Design Em	Dri

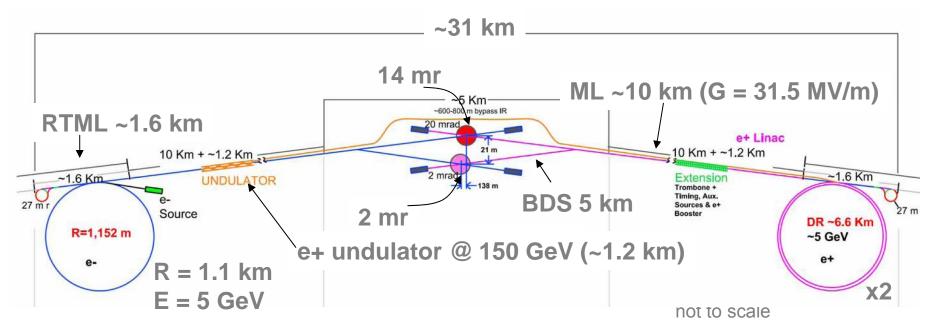
RDR 'matrix' responsible for technical design and generating the cost estimate

7

;lr						_
	Area Sys	tems				
116	e- source	e+ source	Damping Rings	RTML	Main Linac	BDS
		Kiriki	Gao	ES Kim	Hayano	Yamamoto
matrix	Brachmann Logachev	Sheppard	Guiducci Wolski Zisman	Tenenbaum	Lilje Adolphsen Solyak	Angal-Kalinin Seryi

Technical Systems			
Vacuum systems	Suetsugu	Michelato	Noonan
Magnet systems	Sugahara	Bondachuk	Thomkins
Cryomodule	Ohuchi	Pagani	Carter
Cavity Package	Saito	Proch	Mammosser
RF Power	Fukuda		Larsen
Instrumentation	Urakawa	Burrows	Ross
Dumps/Collimators	Ban	Densham	Markiewicz
Acc. Physics	Kubo	Schulte	
Global Systems			
Ops. & Avail.	Teranuma	Elsen	Himel
Controls	Michizono	Simrock	Carwardine
Cryogenics	Hosoyama	Tavian	Peterson
CF&S	Enomoto	Baldy	Kuchler
Installation	Shidara	Bialwons	Asiri

Responsible for coordinating design


:lo						
Area	Systems					
e- so	u <mark>rce e+ so</mark> u	u <mark>rce D</mark> an	nping Ring	IS RTML	Main Linac	BDS
	Kiril	(i	Gao Guiducci	ES Kim	Hayano Lilje	Yamamoto Angal-Kalipin
matrix Brach		ard	Wolski	Tenenbaum	Adolphsen	Seryi
Logac	chev		Zisman		Сојуак	
Technical System	<u>S</u>					
Vacuum systems	Suetsugu	Michelato	Noonan			
Magnet systems	Sugahara	Bondachuk	Thomkins			
Gryomodule	Ohuchi	Pagani	Carter		chnical	
Cavity Package	Saito	Proch	Mammosse			
RF Power	Fukuda		Larren	req	uireme	nts
Instrumentation	Urakawa	Rurre	Ross	&		
Dumps/Collimators	Ban	Densham	Markiewicz	X		
Acc. Physics	Kubo	Schulte		SDE	ecification	ons
				ope	omoatte	one
Global Systems						
Ops. & Avail.	Teranuma	Elsen	Himel			
Controls	Michizono	Simrock	Carwardine			
Cryogenics	Hosoyama	Tavian	Peterson			
CF&S	Enomoto	Baldy	Kuchler			
Installation	Shidara	Bialwons	Asiri	rt		9

ir ,	Area Sys	toms					
	e- source		urce Dar	nping Ring	s RTML	Main Linac	BDS
RDR		Kiri		Gao	ES Kim	Hayano	Yamamoto
matrix	Brachmann Logachev	Shepp	bard	Guiducci Wolski Zisman	Tenenbaum	Lilje Adolphsen Solyak	Angal-Kalinin Seryi
Technical Sy	stems						
Vacuum systen	ns s	Suetsugu	Michelato	Noonan			
Magnet system	I <mark>S</mark> S	Sugahara	Bondachuk	Thomkins			
Gryomodule		Ohuchi	Pagani	Carter			
Cavity Package		Saito	Proch	Mammosser			
RF Power		Fukuda		Larsen	Res	ponsibl	e
Instrumentatio	n	Urakawa	Burrows	Ross	for o	roet	
Dumps/Collima	tors	Ban	Densham	Markiewicz		031	
Acc. Physics		Kubo	Schulte		estir	mates	
Global Syster	ms						
Ops. & Avail.	Т	eranuma	Elsen	Himel			
Controls	N	lichizono	Simrock	Carwardine			
Cryogenics	н	osoyama	Tavian	Peterson			
CFAS	/ E	Enomoto	Baldy	Kuchler	si emeniori em		
Installation		Shidara	Bialwons	Asiri	• • • • • •		10

:lr						
Area S e- sour	ystems					
e- sour	ce e+ sou	u <mark>rce Da</mark> r	nping Rings	s RTML	Main Linac	BDS
RDR	Kiril	N	Gao Guidur i	ES Kim	Hayano Lilie	Yamamoto Angal-Kalipin
matrix Brachman Logache		ard	Wolsk Zismar	Tenchorum	Adra sen So yak	ryi
Technical Systems						
Vacuum systems	Sue sugu	Miche ato	Noon [,] n			
Magnet systems	Sug: hara	Bond: chuk	Thorrkins			
Gryomodule	Oh ıchi	Pa _J ani	Cirter			
Cavity Package	\$ aito	∫ roch	M: mmosser			
RF Power	F ıkuda		Larsen			
Instrumentation	Jrakawa	Burrais	1055			
Dumps/Collimators	Ban	Densham	Markiewicz	0	- 1	liad
Acc. Physics	Kubo	Schulte		C 0	st supp	lied
				(ro	lled-up)	to
Global Systems					neu-up)	l
Ops. & Avail.	Teranuma	Elsen	Himel	Are	ea	
Controls	Michizono	Simrock	Carwardine	C	atomo	
Cryogenics	Hosoyama	Tavian	Peterson	Sy	stems	
CF&S	Enomoto	Baldy	Kuchler			
Installation	Shidara	Bialwons	Asiri			11

RDR matrix Technical Systems	C C+ SO Kiri n Shepp	ki	nping Rin Gao Cuiducci Wolski Iisman	gs RTML Main Linac BDS ES Kim Hajano Yamuhoto Lile Angal-Kalinin Terenbaum Adolphsen Siryi Coiya
Vacuum systems Magnet systems Cryomodule Cavity Package RF Power Instrumentation Dumps/Collimators Acc. Physics	Suetsugu Sugahara Ohuchi Saito Fukuda Urakawa Ban Kubo	Michelato Bondachuk Pagani Proch Burrows Densham Schulte	Noonan Thomkins Carter Mammosser Larsen Ross Markiewicz	Bialowons Garbincius Shidara
Global Systems				responsible
Ops. & Avail. Controls Cryogenics	Teranuma Michizono Hosoyama	Elsen Simrock Tavian	Himel Carwardine Peterson	for complete budget book
CF&S Installation	Enomoto Shidara	Baldy Bialwons	Kuchler Asiri	ort 12

Configuration used for Vancouver cost estimate fundamentally no different from Frascati BC, but much more detail design work

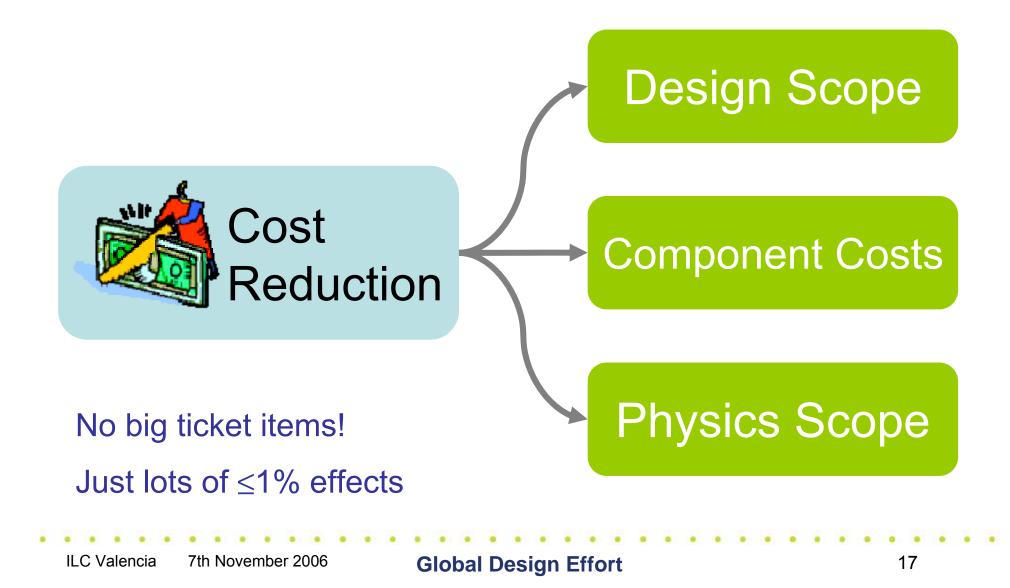
ilr The Status at Vancouver (July '06)

	System		Cost E	stimate	esrec	eived	for			F	Region	al
	description	common	e-	e+	DR	RTML	ML	BDS	Exp	Am	Asia	Eur
	e- Source		partial									
	e+ Source			partial								
	DR				d.							
	RTML					partial						
	Main Linac											
	BDS							√ b.				
	Com, Op, Reliab											
	Control System											
	Cryogenics - a.				partial			partial				
	CF&S							85% b			\checkmark	
	Installation		√ f.	√ f.	√ f.	√ f.	√ f.	√ f.				
	Instrumentation		\checkmark			\checkmark						
	Cavities											
	Cryomodules		g.	g.		g.	g.					
Rough 1 st iter	ation	V	\checkmark	\checkmark		\checkmark					\checkmark	
	allon				d.			90% b				
Not quite 100	0/ but alaga	V	\checkmark									
Not quite 100	70 DUL CIOSE		C.√		√ d.	\checkmark						
Main cost driv	vers availabl	e								Ρ.	Garbi	ncius

Result of Vancouver

ilr

İİL


- Initial rough cost estimate too high
 Not too surprised
- Begin design and cost iteration
 Identify cost drivers
- Cost estimate not as 'mature' as hoped
 - Clear than more time will be needed to push back on costs
 - ~3 month delay to schedule
 - Draft RDR+cost to be published at Beijing Feb. 07

From Vancouver to Valencia:

Saving Money

Design Scope

Component Costs

Physics Scope

ILC Valencia 7th November 2006

Design Scope

Component Costs

Physics Scope

- Performance driven
 design
- Identify cheaper machine design (layout) modifications
- Understand Cost Performance trade-offs
 - Mostly associated with <u>risk</u>
- Area System Orientated

Design Scope

Component Costs

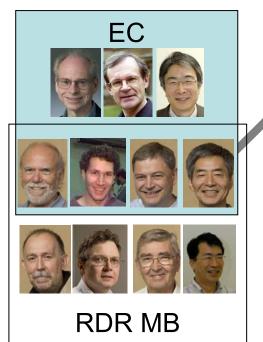
Physics Scope

- Review component-level
 costs
- Identify 'conservative' estimates
 - Push back on estimates
 - Mass quantity reductions etc.
- Design cost savings
 - Simplification of designs
 - Cost saving alternatives
- Technical System orientated

Design Scope

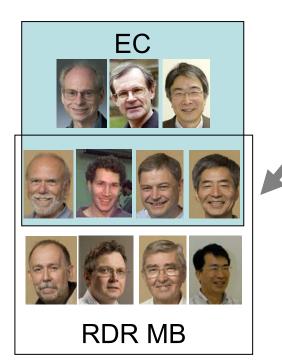
Component Costs

- Energy
- Luminosity
- Upgradeability
- Least attractive option

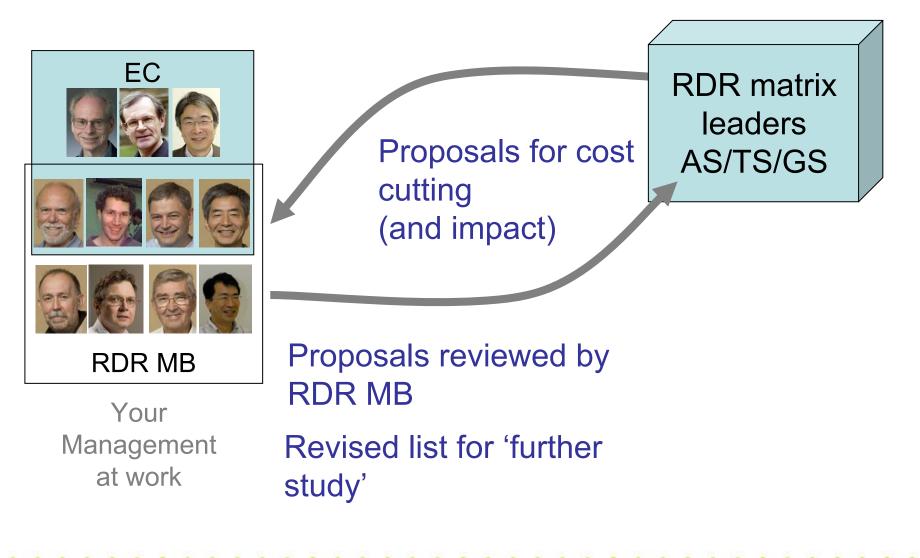

Physics Scope

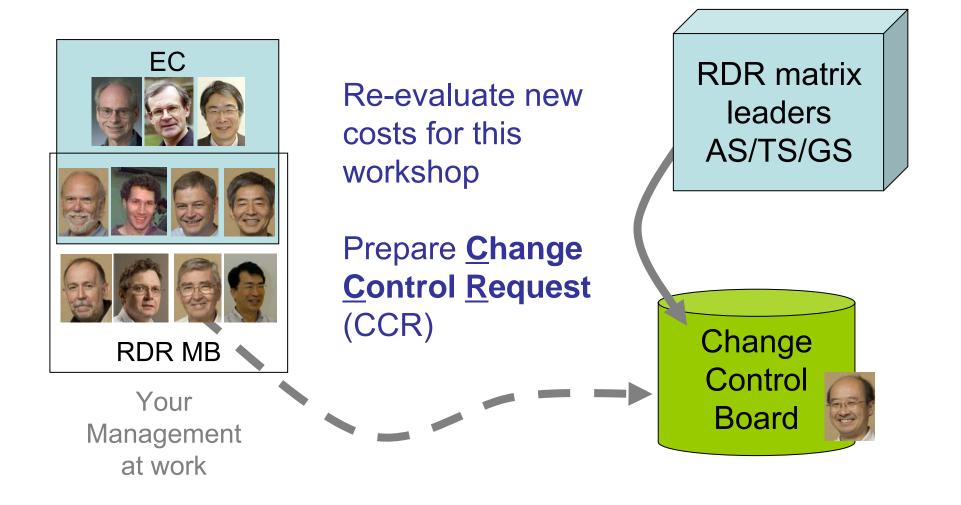
• Easiest way to save money!

Global Design Effort

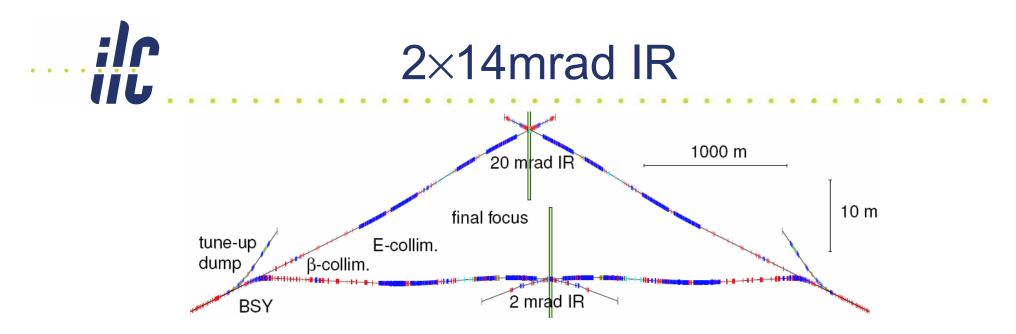

PHYSICS

Your Management at work Request for cost reduction studies (with targets) RDR matrix leaders AS/TS/GS




Proposals for cost cutting (and impact) RDR matrix leaders AS/TS/GS

Your Management at work



The Process

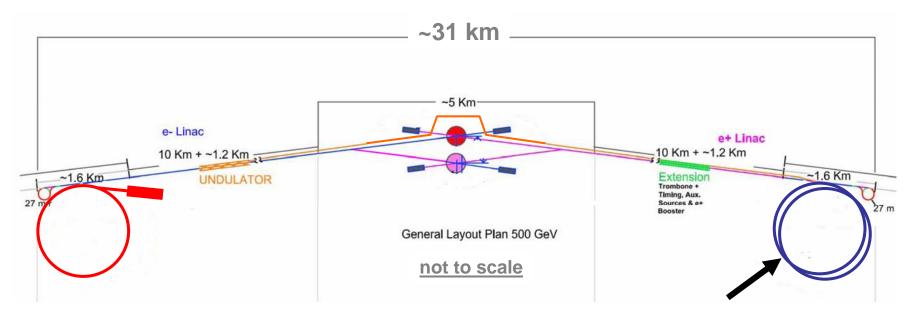
Face-To-Face Meetings

31/8-1/9 KEK	Initial discussions on major design choices -Central injector concept -Positron source -CFS (tunnel)
20-23/9 KEK (GDE MAC / TTC)	Further discussions and planning -Cost reduction goals -Discussions of SCRF costs (TTC) -Planning for CALTECH, Valencia
10-12/10 CALTECH	Major CFS review Review of AS cost reduction proposals

Vancouver Baseline

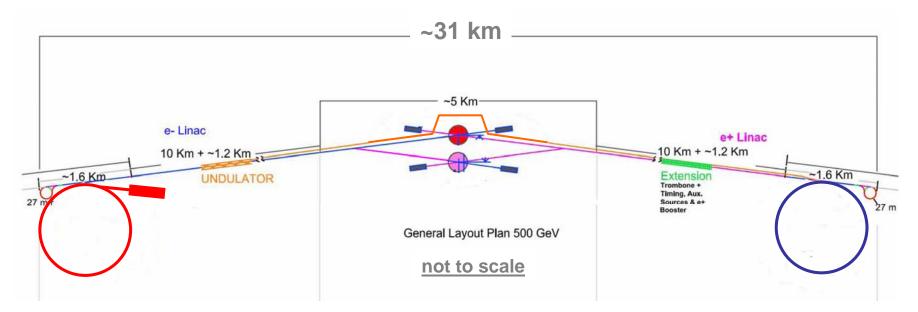
- Two BDSs, 20/2 mrad, 2 detectors, 2 longitudinally separated IR halls
- Present Baseline

hall at Z=0

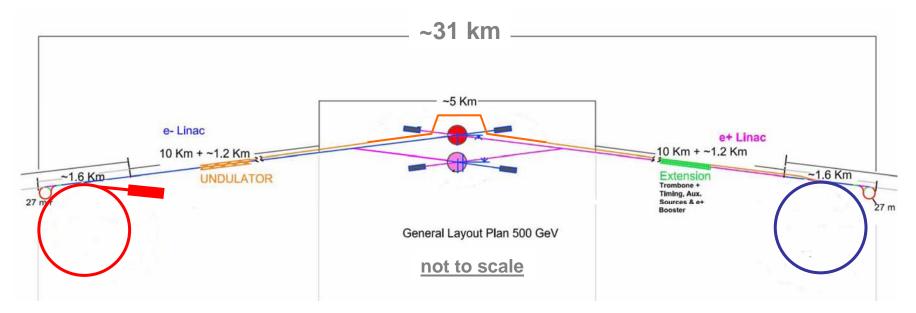

 Two BDSs, 14/14 mrad, 2 detectors in single IR

- Cost-driven design modification
- 2mr IR significantly more expensive as 20mr
 Immature design
- Discussions with MDI panel

ILC Valencia 7th N

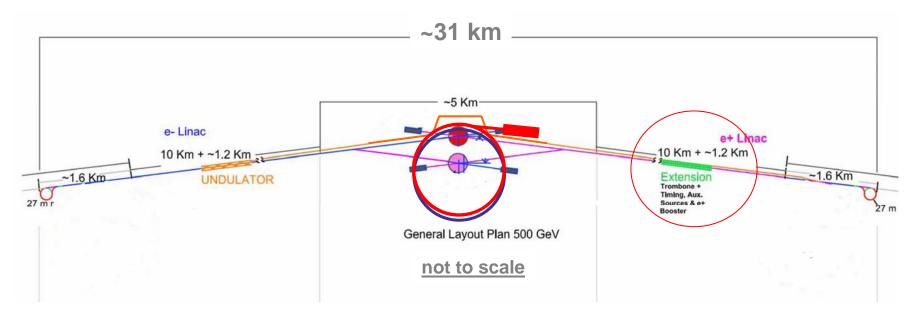

7th November 2006

Removal of second e+ ring



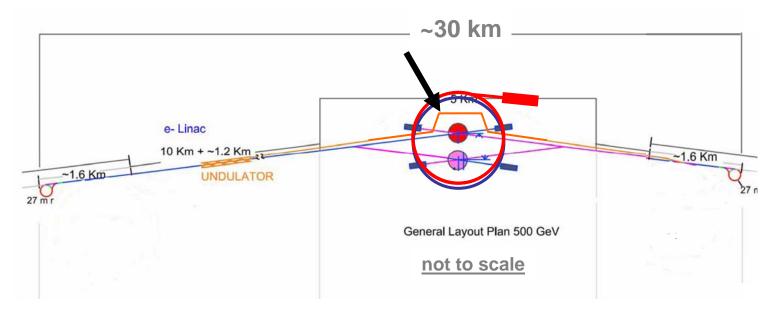
Removal of second e+ ring

simulations of effect of clearing electrodes on **Electron Cloud** instability suggests that a **single e+ ring** will be sufficient



Centralised injectors

Place both e+ and e- ring in single centralized tunnel



Centralised injectors

Place both e+ and e- ring in single centralized tunnel

Adjust timing (remove timing insert in e+ linac)

Centralised injectors

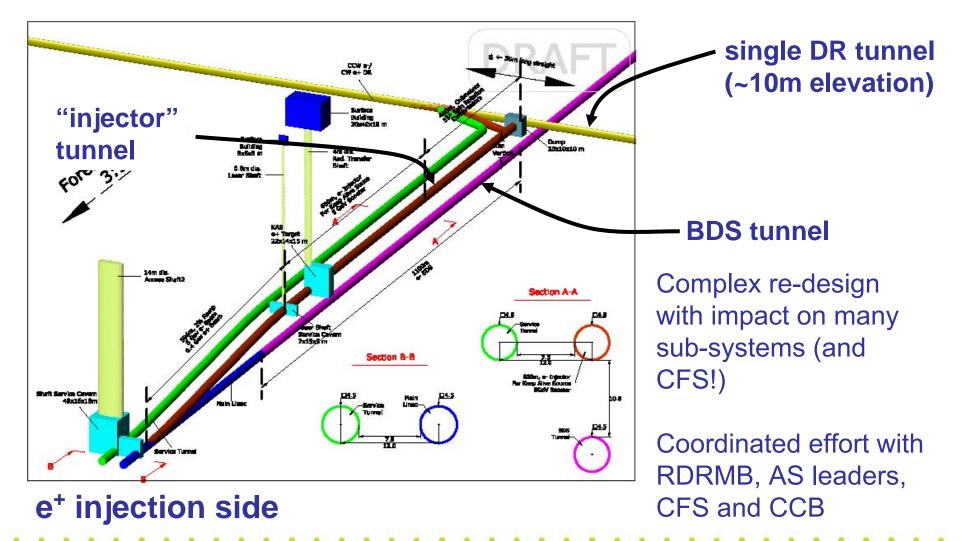
Place both e+ and e- ring in single centralized tunnel

Adjust timing (remove timing insert in e+ linac)

Remove BDS e+ bypass

ILC Valencia 7th November 2006

Baseline Configuration Long 5GeV low-emittance transport lines now required


Centralised injectors

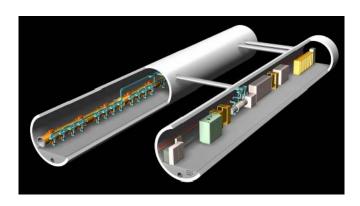
Place both e+ and e- ring in single centralized tunnel

Adjust timing (remove timing insert in e+ linac)

Remove BDS e+ bypass

ILC Valencia 7th November 2006

Examples of Cost-Driven Design Modifications being considered


	RDR MB	CCB
2×14mr IRs	supported	\checkmark
central injectors	supported	\checkmark
Removal of service tunnel	rejected	
conventional e+ source	rejected	
RF unit modifications (24 \rightarrow 26 cav/klys)	supported	submitted
reduced RF in DR (6 $ ightarrow$ 9mm σ_{z})	supported	in prep
DR race-track lattice (CFS)	supported	in prep
reduced static cryo overhead	supported	in prep
removal linac RF overhead	supported	in prep
single-stage bunch compressor	rejected	
e- source: common pre-accelerator	supported	in prep

Examples of Cost-Driven Design Modifications being considered

		RDR MB	() () B
2×14mr IRs		ounnarfad	44. M ^{agar}
central injectors	Current decisions are baseline for the RDR		st
Removal of service t	Many accorte will be	ro ovaluatod	
conventional e+ sour	(iterated) during the post-RDR Engineering		
RF unit modifications			
reduced RF in DR (6			
DR race-track lattice			
reduced static cryo o			
removal linac RF over	rhead	supported	in prep
single-stage bunch compressor		rejected	
e- source: common pre-accelerator		supported	in prep

ILC Valencia 7th November 2006

CFS: A Special Case

NS SLONG C10H

ilc

AND YORKS

BORNESS BORNESS

CENTRE CARESCENT CONTRE CONTRECTOR

Rudenik oktobe

N 12 - 12

1. August 10 3 10

DRAM ARKS

COMP. PUL

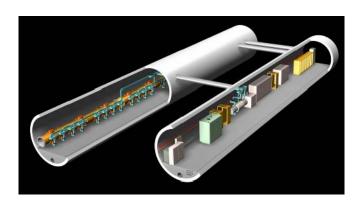
 <u>Conventional Facilities & Siting</u> is a major cost driver

 CFS review at CALTECH meeting

- close-loop with System Areas
- Review of requirements
- Identification of cost reduction

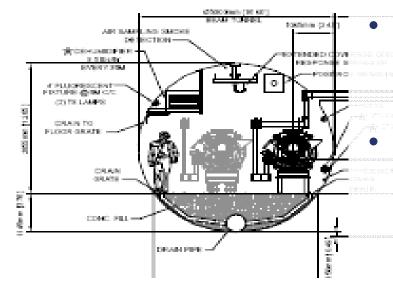
 \rightarrow CFS presentation by J-L. Baldy

BORNESS


ILC Valencia 7th November 2006

CRAMPIPE

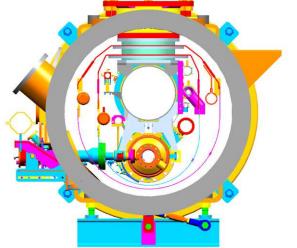
Global Design Effort


measures

CFS: A Special Case

ic

- Many significant costs savings identified
 - Reduction of number of shafts
 - Reduced volume of underground construction


- Impact of schedule being re-evaluated
 - 7 years original assumed
- Power/Cooling requirements reviewed – Dedicted meeting at SLAC (chaired by M. Ross)
 - Several cost saving items identified
 - and reduction of site power requirement

SCRF: The Other Cost Driver

ilc

- Baseline remains fundamentally unchanged
 - baseline gradient: 31.5 MV/m
 - cryomodule based on TESLA technology
 - so-called 4th generation

Challenge remains highgradient R&D (yield) – S0/S1 task force (more later)

Our Goals for This Workshop

- Review status of design
 - Including cost-driven modifications
- Consolidate re-estimated costs
 - Where do we stand after this iteration?
- Interaction / discussion with Physics & Detector Community
 - Understanding physics requirements / cost tradeoffs
 - Potential for cost-driven physics scope reductions

Our Goals for This Workshop (2)

- Review component cost estimates
 - Look for further cost savings
 - Quantify cost-basis and 'quality of estimate'
 - Prepare for full cost review (SLAC, December)
- Closed sessions:
 - Wednesday: Area Systems (design reviews)
 - Thursday: Technical Systems (cost reviews)
- Identify (by end of Workshop)
 - If we have achieved our cost reduction goals, and if not
 - Where we have to push harder!

Patience is a Virtue

ILC Valencia 7th November 2006

Global Design Effort

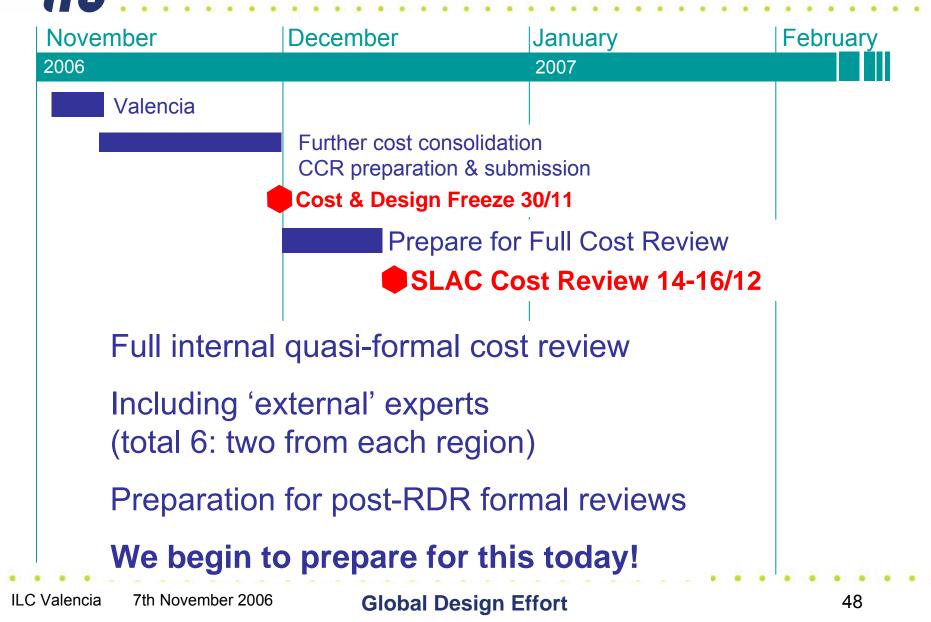
42

Potential Physics Scope Reduction

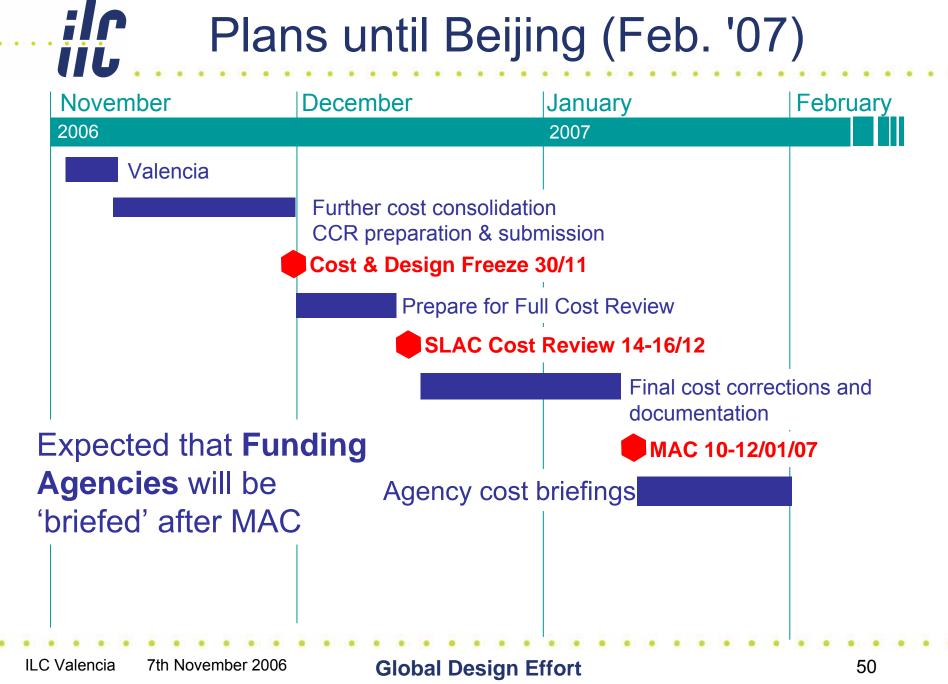
Physics Scope Per Dollar

- Re-evaluating Physics Goals is part of Cost Awareness
- Physics 'cost drivers':
 - Energy reach: re-defining 500 GeV
 - Peak Luminosity
- Single IR (push-pull)
 - not directly a physics scope issue
- These will need to be fully discussed and coordinated with the Physics & Detector Community
 - Physics Parameter Group
 - MDI panel
 - (WWS)

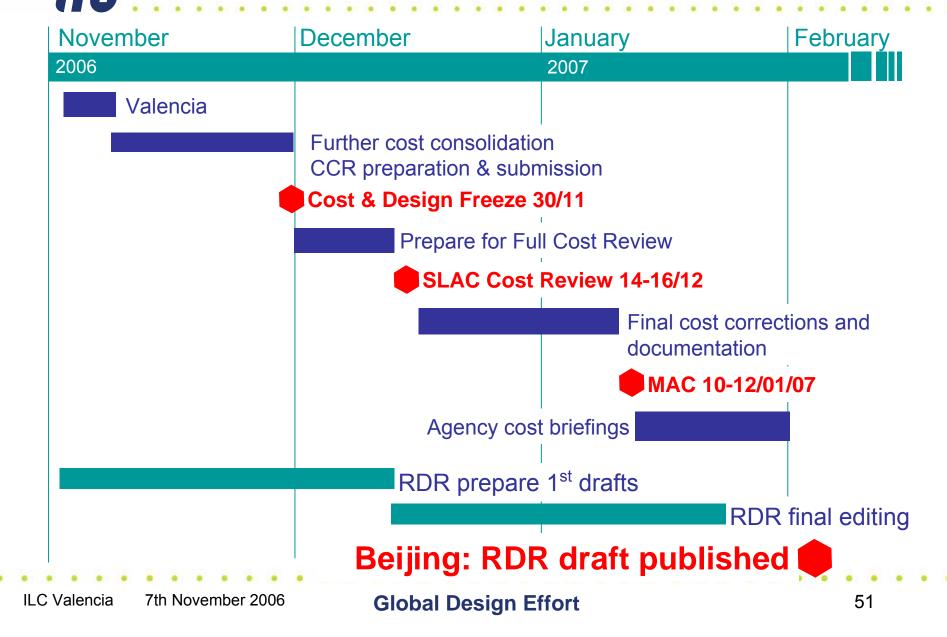
 \rightarrow Barish Friday plenary


Form Valencia to Beijing: The "Last 100 meters"

November	December	January	February
2006		2007	
Valencia			
 By the end of this workshop we must have consolidated design new cost estimate prioritized plans for addressing remaining (cost-driven) issues schedule for CCB Clear guidance and goals for 			
writing the RDR			


November	December	January	February
2006		2007	
Valencia			
	Further cost cons	solidation	
	CCR preparation 8	submission	
	Cost & Design	Freeze	
	30/11		
	Baseline design complete		
		further design	this datar
	modifications after this dater Costs are consider complete		
			•

•



ilr

ilr

ILC Global R&D: "Driving the Money"

Mission of the Global R&D Board

- Coordinate worldwide, prioritized, proposal- driven, R&D efforts
- The goal is clear, the detailed means required resolution by the RDB of issues, for example:
 - Level of coordination
 - Parallel efforts coordination, Regional needs
 - "Reviewing" role: Ideal vs specific R&D Program
 - Balance ILC/ILC Detectors issues
 - Goals, Timelines
 - Interfaces, RDB/DCB, RDB/Industrialization...
- RDB have already successfully interfaced with US (DoE) and UK (PPARC) ILC R&D proposals.

ilc

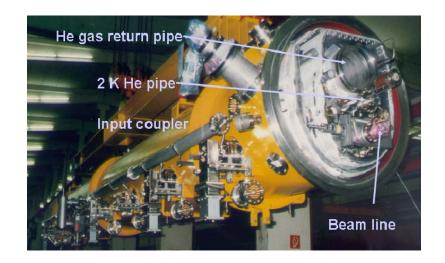
Priority: high

To address priority R&D items, RDB has convened several 'task forces'.

S0-S3 will report on Friday AM GDE plenary

S0 High-Gradient Cavities

ic

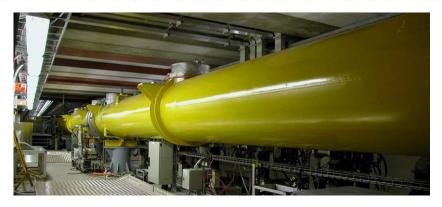

- Addresses current 'poor' yield for EP cavities
- Primary goal: establish parameters for routinely producing 35 MV/m EP'd cavities
 - required \geq 80% yield

H. Hayano, T. Higo, L. Lilje, J. Mammosser, H. Padamsee, M. Ross, K. Saito

ILC Valencia 7th November 2006

S0 High-Gradient Cavities S1 High-Gradient Cryomodule S2 Test Linac S3 Damping Ring

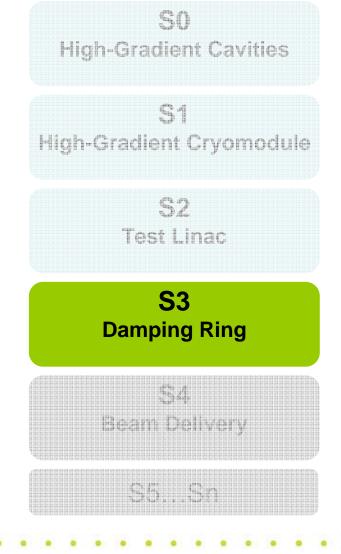
S4 Beam Delivery S5...Sn

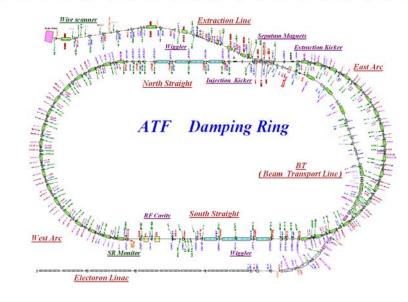


- Achieve 31.5 MV/m at a Q₀=10¹⁰ as operational gradient
- in more than one module of 8 cavities
- including e.g. fast tuner operation and other features that could affect gradient performance

H. Hayano, T. Higo, L. Lilje, J. Mammosser, H. Padamsee, M. Ross, K. Saito

ILC Valencia 7th November 2006





- Define requirements for 'string tests'
 minimum: 1 RF unit
- How many units required?
- Scope of string test

Hasan Padamsee (Co-Chair), Tom Himel (Co-Chair), Bob Kephart, Hitoshi Hayano, Nobu Toge, Hans Weise,

Consultants: Nagaitsev, Nikolai Solyak, Lutz Lilje, Marc Ross, Daniel Schulte

- Identification and prioritisation of DR related critical R&D
- Includes evaluation of available (and proposed) test facilities.

Andy Wolski,

ILC Valencia 7th November 2006

The Last Bit

Valencia GDE Plenary Reports

Tuesday PM (Parallel with ECFA workshop)

GDE Opening Plenary Session I (14:30. Chairperson: Barry Barish (Caltech)		: Barry Barish (<i>Caltech</i>)	
>16:45)		Location:	ATENEO (ATENEO - Salón de Actos)
14:30	RDR Management Board Overview (35)		Kaoru Yokoya (<i>KEK</i>)
15:05	Cost Status (30')		Tetsuo Shidara (KEK)
15:35	Main Linac System (40)		Hitoshi Hayano (<i>KEK</i>)
16:15	Damping Ring (30)		Susanna Guiducci (INFN)

GDE Opening Plenary Session II (17:15- Chairperson: Mitsuaki Nozaki (KEK)		1: Mitsuaki Nozaki (<i>KEK</i>)	
>19:30)		Location:	ATENEO (ATENEO - Salón de Actos)
17:15	BDS/MDI (30)	Deep	a Angal-Kalinin (CCLRC Daresbury)
17:45	CF&S (40')		Jean-Luc Baldy (CERN)
18:25	RDB Report (30)		Marc Ross (FNAL)
18:55	EDMS (30)		Maura Barone (<i>Fermilab</i>)

Valencia GDE Plenary Reports

Friday AM (Parallel with ECFA workshop)

GDE F	inal Plenary Session III (09:00->11:00)	Description:	Tentative	
		Chairperson	: Jean-Pierre Delahaye (<i>CERN</i>)	
		Location:	ATENEO - Salón de Actos	
09:00	S0/S1 (30')		Hasan Padamsee (<i>Cornell</i>)	
09:30	S2 (30')		Thomas Himel (SLAC)	
10:00	S3 (30)	,	Andrzej Wolski (<i>Daresbury</i>)	
10:30	Coffee Break			
GDE F	inal Plenary Session IV (11:00->13:00)	Descriptio	on: Tentative	
		Chairpers	on: Brian Foster (<i>Oxford</i>)	
		Location:	ATENEO - Salón de Actos	
11:00	CCB Report (30)		Nobu Toge (<i>KEK</i>)	
11:30	Cost Review Report (30)	Jea	Jean-Pierre Delahaye (CERN)	
12:00	RDR Writing (20)		Nan Phinney (SLAC)	
12:20	Communications (30)			
		che enterte ent		

Friday PM (Parallel with ECFA workshop)

GDE F	inal Plenary Session V (14:30->15:30)	Description: Tentative
		Chairperson: Gerry Dugan (Cornell)
		Location: ATENEO - Salón de Actos
14:30	Post RDR (30)	Brian Foster (University of Oxford)
15:00	The Road to Beijing (30)	Barry Barish (Caltech)

Summary

- First iteration design and costs at Vancouver workshop were too high
- Focus of interim period Vancouver-Valencia focused on cost reduction
 - Machine design (scope) modifications
 - Component level cost reduction
 - Physics scope after discussion with Physics & Detector Community
- Many design modifications being implemented
 - Several proposals rejected by RDR MB

<u>ilr</u>

Summary (cont.)

- This meeting now critical to consolidate new design
 and associated cost estimate
 - Close loops
 - Area Systems \leftrightarrow Technical Groups
 - Understand cost status
 - Quality of cost basis
 - Preparation for SLAC cost review
- Critical planning for presentation of Draft RDR including Cost Estimate at Beijing meeting (February 07)
- Global planning for critical R&D beginning
 - Formation of 'S' task forces

- The GDE/RDR groups have made a phenomenal effort to develop the Baseline Design and associated Cost Estimate, but...
- There is still hard work ahead of us as we face the last '100m'
- We must continue to **work together** to bring the RDR phase to a successful (and affordable) conclusion.

Thank you for your attention