LDC and the 14 mrad Crossing Angle

Karsten Buesser

LDC Meeting Valencia 11. November 2006

Beam Delivery System

BDS Change Request: Crossing Angle

- Beam Delivery System change request
 - Submitted on July 29th to the CCB
 - Approved by GDE EC on September 21st.
- Changing the baseline from 2/20 mrad crossing angles to a symmetric configuration of 14/14 mrad
- Both detectors will be placed at the same longitudinal position (z=0) in one detector hall
- Reason: substantial cost savings

14/20 mrad Technology

4

2 mrad Technology

K. Buesser 🙀

LDC 14 mrad Forward Region

14 mrad crossing angle with anti-DID field (1:10)

A. Vogel

Forward region design (compressed view 1:2)

Beamstrahlung Pairs on the BeamCal

K. Buesser 🙀

LDC Meeting Valencia

7

VTX Hits

Pair background simulated with GUINEA-PIG and MOKKA

VTX Hits

Neutrons passing any VTX layer (with double counting)

- \blacksquare 1.7 \pm 2.9 per BX for ILC-NOM-500
- \blacksquare 8.6 \pm 10.4 per BX for ILC-LOWP-500

Normalisation per unit area (total surface is 2.8 · 10³ cm²)

Normalisation per nominal run time with $\int \mathcal{L} dt = 500 \, \text{fb}^{-1}$

- 3.9 · 10¹¹ BX in total for ILC-NOM-500
- 2.0 · 10¹¹ BX in total for ILC-LOWP-500

Neutron fluence (no NIEL scaling applied yet)

- $(2.3 \pm 4.0) \cdot 10^8$ neutrons / cm² for ILC-NOM-500
- (6.1 \pm 7.4) \cdot 10⁸ neutrons / cm² for ILC-LOWP-500

Neutrons in the VTX

Statistics for neutrons are rather low ...

TPC Hits

Mokka hits in the TPC (overlay of 100 BX)

Backscattering Sources

Origins of backscattered electrons and positrons which enter the inner parts of the detector

Summary

- 14 mrad crossing angle is the ILC baseline now
- LDC forward region has been adopted to that by modifying the existing 20 mrad design
 - thanks to Adrian Vogel and Ringo Schmidt
- First background studies have been performed
 - No surprises
- Optimisations yet to be done

