Investigating  $\pi^0$  Kinematic Fits

EM calorimeters under consideration for ILC have unprecedented potential for photon position resolution.

Can this be used to measure  $\pi^0$  energies very well?

R also relevant

Also see talks at Snowmass 05 and Vancouver 06.



Graham W. Wilson, University of Kansas

#### 1. $\pi^0$ 's and Particle Flow

- Particle Flow
  - Charged particles => TRACKER => 62%
  - Photons => ECAL => 26%
  - − Neutral hadrons => HCAL => 12%
- Photons
  - Prompt Photons (can assume vtx = (0,0,0))
    - $\pi^0$  (About 95% of the photon energy content at the Z)
    - η, η' etc.
    - Lone photons (eg.  $\omega \to \pi^0 \gamma$ )
  - Non-prompt Photons
    - $K_S^0 \rightarrow \pi^0 \pi^0$
    - $\Lambda \to \pi^0$  n
- So, as you know, most photons do come from prompt  $\pi^0$ 's, we do know the  $\pi^0$  mass, and they interact in well understood ways!

#### Issues

- A) Proof of Principle for the Intrinsic potential of a 1-C constrained fit to  $m(\pi^0)$  for a single **isolated**  $\pi^0$  with two spatially separated photons.
  - Can we get a fitter that works, and does it buy us anything in principle? (Emphatic YES)
  - What detector parameters / design issues does it point to ?
- B) Practical *implementation* in the context of hadronic jets.
  - Major issue: combinatorics (9.6  $\pi^0$  per event at the Z). Algorithm for choosing appropriate pairings.
  - Relatively small background from non-prompt photons can presumably be discriminated against using cluster pointing.
  - Details of photon reconstruction in jets.
    - Need to understand errors and minimize biases

Proof of Principle (A) is now completed and very encouraging.

First steps towards assessing the potential in the context of B).

# 2. $\pi^0$ Kinematic Fitting

• For simplicity used the following measured experimental quantities:

```
E_1 (Energy of photon 1)

E_2 (Energy of photon 2)

\psi_{12} (3-d opening angle of photons 1 and 2)
```

- Fit uses
  - 3 variables,  $\mathbf{x} = (E_1, E_2, 2(1 \cos \psi_{12}))$
  - a diagonal error matrix (assumes individual  $\gamma$ 's are completely resolved and measured independently)
  - \* and the constraint equation

$$m_{\pi^0}^2 = 2 E_1 E_2 (1 - \cos \psi_{12}) = x_1 x_2 x_3$$

### $\pi^0$ mass resolution

• Can show that for  $\sigma_E/E = c_1/\sqrt{E}$  that  $\Delta m/m = c_1/\sqrt{\left[(1-a^2) E_{\pi^0}\right]} \oplus 3.70 \ \Delta \psi_{12} E_{\pi^0} \sqrt{(\beta^2-a^2)}$  where  $a = \beta \cos\theta^* = (E_1-E_2)/E_{\pi^0}$ 

So the mass resolution has 2 terms:

- i) depending on the EM energy resolution (c<sub>1</sub>)
- ii) depending on the opening angle resolution ( $\Delta \psi_{12}$ )

The relative importance of each depends on  $(E_{\pi_0}, a)$ 

# $\pi^0$ mass resolution

Plots assume:

 $c_1 = 0.16 \text{ (SiD)}$ 

 $\Delta \psi_{12} = 2 \text{ mrad}$ 

For these detector resolutions, 5 GeV  $\pi^0$  mass resolution dominated by the E term





# Recent Improvements

- Blobel numerical fitter in DP in addition to analytic fit (both F77 for now)
  - consistent
- Technical details
  - $-\cos\theta^* = (1/\beta)(E_1 E_2) / E_{\pi^0}$
  - Error truncation for low energies : avoid –ve energies ...
  - Using simulated error rather than measured error
  - Now have *perfect* probability and pull distributions
- Error propagation after kinematic fit
  - Demonstration that for each  $\pi^0$  in the event, we could not only improve the  $\pi^0$  energy resolution but would also **know the error**.

#### $20~GeV~\pi^0$

Use single  $\pi^0$  toy MC with Gaussian smearing for studies.

Energy resolution per photon =  $16\%/\sqrt{E}$ .

Error on  $\psi_{12}$ =0.5 mrad.

These resolutions used unless otherwise stated.



A rare thing: a really flat probability distribution !!!



Pull = 
$$(x_{fit} - x_{meas})/\sqrt{(\sigma_{meas}^2 - \sigma_{fit}^2)}$$

Pull distributions consistent with unit Gaussian as expected.

Note: each variable has an identical pull per event, since they were constructed to be symmetric.  $\{z_{12} = 2(1-\cos\psi_{12})\}$ 



# 3. Results on π<sup>0</sup> Energy Resolution Improvement

For the Proof of Principle study there are:

Two relevant  $\pi^0$  kinematic parameters:

- i) E  $(\pi^0)$
- ii)  $\cos\theta^*$  (cosine of CM decay angle)

And two relevant detector parameters:

- i) Photon fractional energy resolution ( $\Delta E/E$ )
- ii) Opening angle resolution ( $\Delta \psi_{12}$ )



# DRAMATIC IMPROVEMENT

But this plot is not really a good representation of what is going on.



From now on, will use the  $\pi^0$  energy error ratio (fitted/measured) as the estimator of the improvement.

Call this the improvement ratio.



Very strong dependence of fit error on  $\cos\theta^*$ . Symmetric decay  $(\cos\theta^*=0)$  is best



Improvement by up to a factor of 7!

On average,

factor of 2.

Improves by a factor of 1.3 on average.

Boomerangs: 16 per cent, 0.5mr 0.75 0.75 0.5 0.5 0.25 0.25 1.25 GeV 5 GeV -0.25 -0.25 -0.5 -0.5 -0.75 -0.75 -1 0.25 0.5 0.75 0.25 0.5 0.75 0 0.75 x: improvement ratio 0.5 0.25 20 GeV y:  $cos\theta^*$ 0 -0.25 -0.5 -0.75-1 0.75 0.5 0.25

Dependence on  $\pi^0$  energy



#### $5 \text{ GeV } \pi^0$

Average improvement factor not highly dependent on energy resolution.

BUT the maximum possible improvements increase as the energy resolution is degraded.







#### What's going on?

5 GeV  $\pi^0$ ,  $c_1=16\%$ ,  $\Delta \psi_{12}=0.5$ mr



 $E_{\pi^0}$  changes most when  $p_{fit}$  small.

(NB the constraint is correct, so low  $p_{fit}$  corresponds to  $\pi^0$ 's where typically the energy has fluctuated substantially)



Error on  $\pi^0$  energy is independent of  $p_{fit}$ 



Hard edges correspond to low  $|\cos\theta^*|$ 

# Kinematic Fitting Summary

- Proof of principle of kinematic fit for  $\pi^0$  reconstruction done.
  - Kinematic fit infrastructure now a solid foundation.
  - Well understood errors on each  $\pi^0$ .
- Potential for a factor of two improvement in the energy resolution of the EM component of hadronic jets.

### 4. Towards applying to hadronic jets

- Detector response
- Characterize the multi-photon issues in  $Z \rightarrow uu$ , dd, ss events.
  - Define prompt photons as originating within 10 cm of the origin
    - (NB differs from standard  $c\tau < 10$  cm definition)

# Angular Resolution Studies

5 GeV photon at 90°, sidmay05 detector (4 mm pixels, R=1.27m)

Phi resolution of 0.9 mrad *just* using cluster CoG.

=>  $\theta_{12}$  resolution of 2 mrad is easily achievable for spatially resolved photons.



NB. Previous study (see backup slide), shows that a factor of 5 improvement in resolution is possible at fixed R using longitudinally weighted "track-fit".

#### Cluster Mass for Photons



Of course, photons actually have a mass of zero.

The transverse spread of the shower leads to a non-zero cluster mass calculated from each cell.

Cluster Mass (GeV)

Use to distinguish single photons from merged  $\pi^0$ 's. Performance depends on detector design  $(R, R_M, B, cell\text{-size}, ...)$ 



NB generator has ISR and beamstrahlung turned off.



On average, 1.4 GeV (1.5%)

# Photon Accounting



cf 19.2 GeV from prompt  $\pi^0$ 

Intrinsic *prompt* photon combinatorial background in  $m_{\gamma\gamma}$  distribution assuming perfect resolution, and requiring  $E_{\gamma} > 1$  GeV.

With decent resolution, the combinatoric background looks manageable:

0.09 combinations / 10 MeV/event  $(\pi^0)$ ,

0.06 combinations/10 MeV/event (η).

Especially if one adopts a strategy of finding the most energetic and/or symmetric DK ones first.



Next step: play with some algorithms

#### Conclusions and Outlook

- Kinematic fitting works.
- Excellent angular resolution for photons may lead to much improved resolution on EM component of hadronic jets (and knowledge of the error).
- Immediate plans (with a reliable internet connection!):
  - Implement pairing and fitting algorithm in hadronic events assuming unperturbed photon response.
- Measuring very well some jets (those without neutral hadrons), and knowing the resolution, could be advantageous in some physics analyses.

# Backup Slides

## Position resolution from simple fit

Neglect layer 0 (albedo)

Using the first 12 layers with hits with E>180 keV, combine the measured C of G from each layer using a least-squares fit (errors varying from 0.32mm to 4.4mm). Iteratively drop up to 5 layers in the "track fit".

Position resolution does indeed improve by a factor of 5 in a realistic 100% efficient algorithm!



#### PFA "Dalitz" Plot

Also see: <a href="http://heplx3.phsx.ku.edu/~graham/lcws05">http://heplx3.phsx.ku.edu/~graham/lcws05</a> slacconf gwwilson.pdf

"On Evaluating the Calorimetry Performance of Detector Design Concepts", for an alternative detector-based view of what we need to be doing.



On average, photonic energy only about 30%, but often much greater.

# $\gamma$ , $\pi^0$ , $\eta^0$ rates measured at LEP

|                        | Experimental results |                   |               |                 | JETSET | HERWIG |
|------------------------|----------------------|-------------------|---------------|-----------------|--------|--------|
|                        | OPAL                 | ALEPH [6]         | DELPHI [9]    | L3 [10–12]      | 7.4    | 5.9    |
| photon                 |                      |                   |               |                 |        |        |
| $x_E$ range            | 0.003 - 1.000        | 0.018-0.450       |               |                 |        |        |
| $N_{\gamma}$ in range  | $16.84 \pm 0.86$     | $7.37 \pm 0.24$   |               |                 |        |        |
| $N_{\gamma}$ all $x_E$ | $20.97 \pm 1.15$     |                   |               |                 | 20.76  | 22.65  |
| $\pi^0$                |                      |                   |               |                 |        |        |
| $x_E$ range            | 0.007 - 0.400        | 0.025 - 1.000     | 0.011 - 0.750 | 0.004 - 0.150   |        |        |
| $N_{\pi^0}$ in range   | $8.29 \pm 0.63$      | $4.80 \pm 0.32$   | $7.1 \pm 0.8$ | $8.38 \pm 0.67$ |        |        |
| $N_{\pi^0}$ all $x_E$  | $9.55 \pm 0.76$      | $9.63 \pm 0.64$   | $9.2 \pm 1.0$ | $9.18 \pm 0.73$ | 9.60   | 10.29  |
| η                      |                      |                   |               |                 |        |        |
| $x_E$ range            | 0.025 - 1.000        | 0.100-1.000       |               | 0.020 - 0.300   |        |        |
| $N_{\eta}$ in range    | $0.79 \pm 0.08$      | $0.282 \pm 0.022$ |               | $0.70 \pm 0.08$ |        |        |
| $N_{\eta}$ all $x_E$   | $0.97 \pm 0.11$      |                   |               | $0.91 \pm 0.11$ | 1.00   | 0.92   |
| $N_{\eta} x_p > 0.1$   | $0.344 \pm 0.030$    | $0.282 \pm 0.022$ |               |                 | 0.286  | 0.243  |

Consistent with JETSET tune where 92% of photons come from  $\pi^0$ 's.

Some fraction is nonprompt, from  $K_S^0$ ,  $\Lambda$  decay

9.6  $\pi^0$  per event at Z pole

# Investigating $\pi^0$ Kinematic Fits

- Standard technique for  $\pi^0$ 's is to apply the mass constraint to the measured  $\gamma\gamma$  system.
- Setting aside for now the combinatoric assignment problem in jets, I decided to look into the potential improvement in  $\pi^0$  energy measurement.
- In contrast to "normal ECALs", the Si-W approach promises much better measurement of the  $\gamma\gamma$  opening distance, and hence the opening angle at fixed R. This precise  $\theta_{\gamma\gamma}$  measurement therefore potentially can be used to improve the  $\pi^0$  energy resolution.
- How much?, and how does this affect the detector concepts?

# Methodology

- Wrote toy MC to generate 5 GeV  $\pi^0$  with usual isotropic CM decay angle (dN/dcos $\theta$ \* = 1).
- Assumed photon energy resolution ( $\sigma_E/E$ ) of 16%/ $\sqrt{E}$ .
- Assumed  $\gamma$ – $\gamma$  opening angle resolution of 2 mrad.
- Solved analytically from first principles, the constrained fit problem under the assumption of a diagonal error matrix in terms of  $(E_1, E_2, 2(1-\cos\theta_{12}))$ , and with a first order expansion.
  - Note.  $m^2 = 2 E_1 E_2 (1 \cos \theta_{12})$
- $\pi^0$  kinematics depends a lot on  $\cos\theta^*$ . Useful to define the energy asymmetry,  $a \equiv (E_1-E_2)/(E_1+E_2) = \beta \cos\theta^*$ .