
B. List 8.11.06 Track Models in Reconstruction Page 1

Track Models in Reconstruction

Benno ListBenno List

ILC Workshop Valencia 2006ILC Workshop Valencia 2006
8.11.20068.11.2006

● IntroductionIntroduction

● First Theme: Iterative Track ReconstructionFirst Theme: Iterative Track Reconstruction

● Second Theme: Separating Hits, Tracks, AlgorithmsSecond Theme: Separating Hits, Tracks, Algorithms

B. List 8.11.06 Track Models in Reconstruction Page 2

Introduction

● ILC Detector Concept: One big tracker

– vertex detector

– central tracker

– tracking calorimeter

– muon system

● Emphasis is on Precision tracking

● Aim for a Concept of tracks that is able to encompass “high-order
effects”, even when the initial implementations are based on “tree
level relations”

● Would be nice to have a common concept for all trackers

B. List 8.11.06 Track Models in Reconstruction Page 3

Lessons from H1

● In 1999: Reprocessing of H1 data

● Improved tracking resolution of
central jet chamber by 40%

● At HERA-II: Another 10%

● => Resolution improved by a
factor of 2 over the last 7 years

● This was not due to any single
problem source, but is the result
of hunting down many percent
effects

● Some effects were difficult or
impossible to incorporate into the
tracking model that is used Plots by C. Kleinwort

1 10 100GeVpt
σ

(d
ca

)
[μ

m
]

σ
φ

0
[m

ra
d

]
σ

(1
/p

t)
[%

/G
e

V
]

HERA-I pre-99
HERA-I final

HERA-II (2006)

B. List 8.11.06 Track Models in Reconstruction Page 4

ILC Tracking Demands

● High energy leptons: 250GeV electrons, muons:

– extremely good pt resolution

– radiative losses significant, even for muons!?

● High density jets

– Extremely good pattern recognition

● Tracking down to low momenta (Giga-Z):

– energy loss corrections depend on particle type

– multiple scattering depends on particle type

– Curlers

Consider “phase space corners” early
Steve Aplin, ILC software tools workshop,
Cambridge, 4.4.2006

B. List 8.11.06 Track Models in Reconstruction Page 5

First Theme

My First Point:

● For optimal tracking, you'll always have corrections that depend on
the result of the next reconstruction step

● As a consequence, tracking is an iterative process

B. List 8.11.06 Track Models in Reconstruction Page 6

Hits and Tracks

● Simple example: Hits on a drift chamber:

– Corrections depend on angle β within drift cell and side on which track passes
=> hit position known only in conjunction with a track!

– Wire tilt, twist, sagging: corrections to hit position that depend on z of track
=> needs track, again

– Silicon sensors: Alignment corrections, silicon bending lead to track-dependent
corrections. Also resoloution depends on β of track
=> not even covariance matrix is independent of
external track

B. List 8.11.06 Track Models in Reconstruction Page 7

Track Finding&Fitting Depends on Particle Type

● Going through the detector, a particle

– loses energy through ionisation

– loses energy through bremsstrahlung

– undergoes multiple scattering

● These processes depend on the particle's mass (and charge)

● Mass is generally unknown during initial track reconstruction

● Particle ID is based on result of tracking, plus other detector parts:

– dE/dx measurement

– energy deposition in calorimeter, track in muon system

● If a particle ID has been made, tracking can be improved:

– different parameters (energy loss, multiple scattering) for Kalman filter
=> may even lead to changes in hit assignment to tracks!

– May join two tracks at a kink, or separate them

B. List 8.11.06 Track Models in Reconstruction Page 8

Vertexing and Particle ID

● Golden decay D* -> Kππ,
with D0 -> Kπ at secondary vertex

● Assignment Kaon/Pion often ambiguous,
dE/dx is not always good enough

● Precise location of secondary vertex may
 be improved when track is corrected with
kaon hypothesis.
It may be necessary to try both
assignments (pion or kaon) in the same event!

● => Particle ID hypothesis can come very late in the game

● => Want to store enough info with each track so that track
parameters for a given particle hypothesis can be derived

B. List 8.11.06 Track Models in Reconstruction Page 9

Kinks

● Whether a kink is “significant”
or not depends on particle
type [hypothesis]

● Example of a case where
the form of a trajectory
between the ends is of
interest:

– Want to combine as many
kinked tracks into single tracks
as possible to avoid double
counting

– But: Kinks may indicate in-flight
decays, also from long-lived
new particles (e.g. from certain
SUSY breaking scenarios)
=> want to keep the “kink” info! => Can that be included in the data model?

Steve Aplin, ILC software tools workshop, Cambridge, 4.4.2006

B. List 8.11.06 Track Models in Reconstruction Page 10

Waterfall Model vs. Spiral Model

 Hit Reconstruction

Pattern Recognition
Track Fitting

Momentum
Measurement

Particle-ID

Hit Reconstruction

Pattern Recognition

Track Fitting

Momentum
Measurement

Particle-ID

Each step done independently
Information available at later stages
used to fudge/correct info from previous
stage

At each stage, information from later
stages can be used, if present.
As new information becomes available,
earlier stages may be repeated to get
optimal result

Event
Reconstruction

Event
Reconstruction

Vertex
Reconstruction

Vertex
Reconstruction

B. List 8.11.06 Track Models in Reconstruction Page 11

Second Theme

My Second Point

● Try to Separate:

– Hits

– Trajectories

– Algorithms that find & fit Trajectories from Hits

● The Goal: The tracking software should be

– Performant: find all tracks, have best possible parameter resolution
=> requires well-structured code that can be understood, maintained and
verified

– Fast enough

B. List 8.11.06 Track Models in Reconstruction Page 12

Tracking Across Subdetectors

Want to follow a particle throughout the detector

● This means: Tracking across subdetector boundaries

● May be facilitated by a common track model suitable to describe
tracks under all circumstances:

– Within (rapidly) changing magnetic field (coil!)

– Within a dense medium (calo)

● A track stub from any subdetector should be usable as seed for
any other (neighboring) tracking detector:

– Follow backscattered particles from calo back into TPC?

– Make sure a photon is not an electron with a track missing

– Use calo seeds to extend tracking range to largest |cosθ|

– Interface between trajectories:
intersection with a given surface (2 par's)+momentum (3 par's)

B. List 8.11.06 Track Models in Reconstruction Page 13

Isolating Tracks from Hits

● The ideal situation:
Have a track finder/fitter that works for all detector geometries

● The reality: Track finders mostly tailored to a specific situation:

– 3d hits (TPC, pixel tracker): look for full helix
2d hits (jet chamber, silicon strips, muon chambers): look for circles in r/phi

– circular structure (TPC, jet chamber, barrel silicon tracker): progress in r
or planar structure (forward trackers): proceed in z

● A fully detector-independent tracking code would probably be
prohibitively slow and/or have suboptimal performance

● But: We can sacrifice a bit of speed for generality, if we get:

– Cleaner software design => better maintainability, better reliability

– More versatile software => faster integration of new detector parts or algorithms

– Easier transfer of tracking code across detector concepts

B. List 8.11.06 Track Models in Reconstruction Page 14

Hits and 3D Space Points

● Idealizing detector response signals (“hits”) as 3D space points
with a covariance matrix may work much better in theory (MC) than
practice (data)

– Alignment issues: alignment corrections in r/phi often depend on z coordinate,
often in a non-linear way. Often these effects are missing in MC.

– Corrections may depend on track parameters (incidence angle)
=> track fit has to be iterated, hit has to be corrected

– Ambiguity resolution (mirror hits, multiple hit hypotheses from ganged pixels)

● Not all hits are well described by 3D space points:

– hits on silicon strip sensors: one coordinate is not described by a Gaussian, but
by a box.

– Hits in single silicon pixels or single calo cells: also non-Gaussian

– Silicon sensors may be bent, wires sag: hits are “banana-shaped”

B. List 8.11.06 Track Models in Reconstruction Page 15

Basic Concepts (Classes)

● A Trajectory:

– A curve in 3d-space,

– Parametrized by some arc length s

– Need not be a helix or a straight line!

– Knows its own momentum, mass, and charge (may just be an estimate)

● A Hit:

– Can be a space point, several space points (mirror hits!), a straight or cuved
line, a piece of a cylinder, of a plane

– Knows how to get its own distance from a trajectory

s

B. List 8.11.06 Track Models in Reconstruction Page 16

Fitting a Trajectory to Hits

● To fit a trajectory to hits: Minimize some sort of penalty function

● Encapsulate the trajectory's precise form in the trajectory class

● Trajectory can “answer questions” like:

– arc length or intersection point with a plane, a cylinder, a sphere

– point of closest approach or distance to a point, a line, a circle

– For each arc length, we may also get the momentum vector of the track

● Hit can answer question:

– What is the hits distance to a trajectory

– Hit calculates this using appropriate info from track

– Hit may “correct itself” using (possibly preliminary) information from track

B. List 8.11.06 Track Models in Reconstruction Page 17

Fitting without Knowing the Parametrization

Fitting a Trajectory is possible without knowing the form of the
parametrization:

● Fitting means minimizing a penalty function (χ2)
this needs the derivatives w.r.t. the parameters ∂χ2/∂pi

● Penalty can be gotten from the hits, along with vector of derivatives

● If trajectory provides number of parameters and derivatives of
penalty term w.r.t. the parameters, an external fitter can minimize
the penalty term without knowledge of the parametrization at all

● A kinematic fitter based on this principle has been developed and
works quite nicely. Adding new particles with new parametrizations
is quite easy.

B. List 8.11.06 Track Models in Reconstruction Page 18

Helping Pattern Recognition

● Track Fitting comes after Track Finding

● Important question: Where's the next hit

● Hits belong to a “Detector”; the detector knows how to order hits:
radially, along z, whatever

● During pattern recognition, a track finder may use a detector object
to sort the hits, or provide the next hit candidate .g. for a Kalman
filter

B. List 8.11.06 Track Models in Reconstruction Page 19

Conclusions

● Structure tracking software such that it can use external imput to
improve the tracking result

– particle ID information

– Track seeds

● Be careful with abstractions like “hits are space points”: consider
early how higher-order corrections can be incorporated

● How far can we separate Tracking algorithms from specific
trajectory parametrizatiuons and specific assumptions about
detector geometries without compromizing performance?

B. List 8.11.06 Track Models in Reconstruction Page 20

Reserve

B. List 8.11.06 Track Models in Reconstruction Page 21

Interfacing between Trajectories

● Problem:

– Two tracks from 2 tracking devices shall be combined

– Each tracker uses its own tracking model

● Ansatz 1: Use a commmon 5-parameter helix parametrization

– Problem: does not work for neutral particles or zero B field

● Ansatz 2: Use a 3d-point and momentum vector (plus particle mass,
charge):

– Problem: covariance matrix of 6 parameters is singular

● Ansatz 3: Use point of intersection with a plane or a cylinder or a sphere
(2 parameters) and momentum vector

– Works for all particles in all fields

– Covariance matrix well-behaved

– It is exactly the information the particle carries when it crosses the
plane/cylinder/sphere

B. List 8.11.06 Track Models in Reconstruction Page 22

Remarks

● I'm not an ILC detector expert

● I'm not an ILC software expert

● I'll present a few ideas that come from my personal experience with
tracking software at H1

● Many things may be old news to you

● The question (I'm asking) is not
“What should the software be able to do in the next release?”
but
“Does the existing software and data model make certain things
easy/hard/impossible?”

