
The LCFI Vertex Package
Details and Testing

Ben Jeffery
Oxford University

on behalf of the LCFI collaboration

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 2

Summary

Vertex package consists of ~20k lines of new documented, structured
C++ code replacing relatively undocumented FORTRAN used at SLD,
OPAL and for TESLA TDR studies.

Reconstructed Tracks

Vertices

Flavour tag inputs Vertex Charge

NN Flavour tag

Comparison with previously used code
needed at every level of the package.

Test each layer of reconstruction after
confirming performance of the layer
below it.

Performance should be maintained (at least!) while providing increased
flexibility, maintainability and LCIO interface.

Where possible practical
development led by high level
concepts, NOT copying FORTRAN
nested loops and gotos

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 3

Flexibility of the package

•Vertexing, calculation of neural net inputs and neural net decoupled
into separate Marlin processors while retaining option to run together
outside Marlin framework.

•Each can be run independently – eg when only vertexing is needed
or to save vertex result to disk for later tagging.

•Configuration of neural network inputs simple – can even use
variables from code outside this package (as long as its in LCIO)

•Networks described by XML files read at run time.

•A repository for sharing network descriptions has been agreed.

•Class level and high level documentation will be provided on release.

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 4

Current testing setup

LCIO
Tracks +

FORTRAN Result

SGV

Vertex Package
within Marlin

•Run on jets from 200GeV centre of mass as default

•FORTAN runs within (and is very highly coupled to) SGV fast Monte Carlo
•New rudimentary LCIO output code in SGV produces reconstructed
tracks and results of FORTRAN ZVRES, flavour tag and vertex charge
•Marlin/LCIO framework runs new C++ ZVTOP, flavour tag and vertex charge
•Allows direct comparison running on identical reconstructed tracks

•No comparison available for ZVKIN – not in SGV version of ZVTOP

LCIO
Tracks +

FORTRAN Result
Marlin Result

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 5

ZVRES – Comparison with FORTRAN

Nothing IP Only

• Sample of B jets (always expect secondary)

Good agreement
with some
improvement in
efficiency

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 6

ZVRES – Comparison with FORTRAN

•For those cases where both find >1 vertex

•Small difference explained by Marlin
version finding more cases with 3 vertices

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 7

ZVRES – B Decay length reconstruction

~12000 B jets

IP split into two vertices

Subsequent D Vertex found

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 8

ZVRES – Decay length reconstruction

Marlin:
Width 96μm

FORTRAN:
Width 102μm

•Central peak shows similar performance
in reconstructing the B length

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 9

Marlin better
59%

ZVRES – Decay Lengh Reconstruction

FORTRAN better
41%

Marlin - FORTRAN

+ve cases worth investigation

Comparison on jet by jet basis shows
Marlin generally more accurate

abs(Marlin-MC)
- abs(FORTRAN-MC)

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 10

ZVRES – Performance

•Reasonable runtime performance
achieved after profiler led optimisation.
•Factor ~20 slower than FORTRAN

•Vertex fitter limited (fitter upgrade
possible)

•Tests run in a virtual machine
framework (Valgrind) confirm no
memory leaks, double frees etc.

2.4GHz P4

•Exponential in number of tracks

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 11

•First guess is the average momentum of the jet tracks

ZVKIN – Ghost track finding

Seed

MC B

•No working ZVKIN code available and less documentation
of algorithm – more challenging development.
•First stage of ZVKIN (Ghost Track) is to create a ghost track
that represents the B line of flight.

•Ghost track improves on this to give good reconstruction of
B line of flight

Ghost

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 12

~8000 B jets

•Reasonable reconstruction for first go –
untuned and using SLD defaults

ZVKIN – Preliminary Performance

•Ghost track then used to find vertices

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 13

2 of the 9 different inputs:
20000 u,d,s,c & b jets

Scattered points due to different vertexing
results

Extra differences here under investigation
- differing error propagation
- possible problem with FORTRAN?

Secondary vertex pt corrected mass

Secondary vertex momentum

Other inputs show good agreement
± undocumented features of FORTRAN
being analyzed, documented and added.

Inputs to Neural Network

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 14

sumQ
-4 -2 0 2 4

je
ts

N

0

500

1000

1500

2000

2500
2x10

0 B
± B

sumQ
-4 -2 0 2 4

je
ts

N

0

500

1000

1500

2000

2500
2x10

Flavour tag and vertex charge

Performance of the whole package
working together approaching that of
FORTRAN.

efficiency

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
u

ri
ty

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

b

c (b-bkgr)

open: FORTRAN

full: MARLIN

Good agreement for vertex charge.

B Jets

Fortran Performance

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 15

Summary of Testing

•All parts of package performing well in comparison with previous tools
± small details being fixed now.

•Next steps to replace SGV input with MarlinReco and MOKKA
(still LCIO but technical differences)
should enable easier analysis of performance vs MC
for comprehensive study and tuning after release.

•Test plot codes will be released with future upgrade to enable end user checks.

Package close to reaching convergence

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 16

Extra Slides

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 17

3333 391 53 30 13 9 8 1

231 3099 175 27 5 1

59 110 1378 123 12 1 1

51 18 101 1137 66 7 1

18 7 12 66 645 37 3

11 3 3 11 37 392 25 3

5 4 3 2 2 20 222 9 1

5 1 1 1 8 101 4

1 1 1 6 35

FOTRAN Num Tracks
2 3 4 5 6 7 8 9 10 11

M
A

R
L

IN
 N

u
m

 T
ra

ck
s

2

3

4

5

6

7

8

9

10

11

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 18

1203 118 5

491 6870 390 6

39 697 3917 58

7 77 138

FOTRAN Num Verts
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
A

R
L

IN
 N

u
m

 V
er

ts

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 19

50 2 6 1

11 1066 24 2

4 26 2918 28 3

1 5 33 1042 7

1 1 5 7 39

FOTRAN Vertex Charge
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

M
A

R
L

IN
 V

er
te

x
C

h
ar

g
e

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 20

The ZVTOP vertex finder D. Jackson,

NIM A 388 (1997) 247
two branches: ZVRES and ZVKIN (also known as ghost track algorithm)

The ZVRES algorithm: very general algorithm

that can cope with arbitrary multi-prong decay topologies

• ‘vertex function‘ calculated from Gaussian

´probability tubes´ representing tracks

• iteratively search 3D-space for maxima of this function

and minimise χ2 of vertex fit

ZVKIN: more specialised algorithm to extend coverage to b-jets with

1-pronged vertices and / or a short-lived B-hadron not resolved from the IP

• additional kinematic information

(IP-, B-, D-decay vertex approximately

lie on a straight line) used to find

vertices

• should improve flavour tag efficiency

and determination of vertex charge

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 21

The ZVTOP vertex finder
two branches: ZVRES and ZVKIN (also known as ghost track algorithm)

The ZVRES algorithm:
tracks approximated as Gaussian ´probability tubes´

from these, a ´vertex function´ is obtained:

3D-space searched for maxima in the vertex function that satisfy

resolubility criterion; track can be contained in > 1 candidate vertex

iterative cuts on χ2 of vertex fit and maximisation of vertex

function results in unambiguous assignment of tracks to vertices

has been shown to work in various environments differing in

energy range, detectors used and physics extracted

very general algorithm that can cope with arbitrary multi-prong decay topologie

D. Jackson,

NIM A 388 (1997) 247

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 22

The ZVKIN (ghost track) algorithm

more specialised algorithm to extend coverage to b-jets in which one or both

secondary and tertiary vertex are 1-pronged and / or in which the B is very

short-lived;

algorithm relies on the fact that IP, B- and D-decay vertex lie on an approximately

straight line due to the boost of the B hadron

should improve flavour tagging capabilities

ZVRES

GHOST

SLD VXD3 bb-MC

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 23

Basic Idea: Tracks represented by Gaussian error 'tubes'
Tubes combined to give vertex function:

ZVRES - Introduction

Vertex function
Track tubes

2

1

1

1

n

in
i

i n
i

i
i

Tube
Tube

Tube

=

=

=

−
∑

∑
∑

Vertex function peaks resolved into distinct vertices
by cut on peak-valley ratio.

Remaining ambiguities in track assignment
resolved by magnitude of vertex function.

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 24

Verified reference implementation needed in the ILC software framework
Object oriented C++

Existing FORTRAN code used at SLD exists, and has been used, in fast simulation SGV.
(Having come with some modifications via OPAL)

Was a possibility just to wrap this with C++, BUT:
•ZVKIN not included - needed for vertex charge tagging.
•Minimal documentation.
•Difficulty of additions or changes:

•ILC boundary conditions - all scale dependant parts needed updating.

ZVTOP - Motivation

Approach
Design and code from the original ZVTOP paper.

•Complete understanding and documentation.
•Direct rewrite would not be object oriented.
•Identifies undocumented parts of the FORTRAN by comparison.

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 25

ZVTOP - Changes
Some approximations in FORTRAN removed for C++:

Tubes: FORTRAN has parabolic approximation with only diagonal error matrix terms.

C++ uses helix and full error:
)pVp(- T-1

2
1

e)(=rfi
p = Residual to track
V = Covariance Matrix

Track-Interaction Point and two track fitting changed from analytic approximation to full fit.

Algorithm structure changed for object orientation:
Based around idea of candidate vertices – Merging, track removal etc.
Gives flexibility and can be reused for ZVKIN.

3
5

1
9
7

3
5
2

Modular – should allow for change of vertex fitters etc
Current fitter thanks to Mark Grimes at Bristol

5
9

Tube =

Tube =

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 26

LCIO persistency framework has been extended by dedicated vertex class to

accommodate the output of our software:

• each ReconstructedParticle points to one vertex from which it originated & to decay ve

will provide MARLIN processors (modules) giving example code for

• running ZVTOP (one processor for each of the two branches ZVRES, ZVKIN)

• calculating neural net input variables from input to package & ZVTOP output

• training neural nets for flavour tag, obtaining NN outputs, determine purity vs efficiency

• vertex charge calculation

• combined processor: ZVRES + Hawkings flavour tag + vertex charge calculation

Interfacing the Vertex Package

Frank Gaede (DESY)

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 27

Current status
performance of ZVRES branch has been shown to be at least as good as FORTRAN

in detailed tests of increasing complexity (Ben Jeffery, Mark Grimes)

ZVKIN branch implemented, first tests successful (Ben Jeffery)

calculation of flavour tag inputs coded (C++) and tested within SGV (Erik Devetak)

designed & implemented a set of internal ‘working classes’ linking ZVTOP with the

other parts of the package (Ben Jeffery)

code ported into MARLIN framework;

MARLIN processors providing examples how to use our code implemented,

‘full chain test’ (ZVRES, tag, vertex charge) with SGV event reconstruction beginning,

initial results promising (BJ, MG, ED, SH)

work on LCIO interface ongoing;

storage of output in LCIO implemented using the new Vertex class (Ben Jeffery)

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 28

Strategy for validating the code
Tests using SGV event reconstruction
permits direct comparisons with results from FORTRAN version using identical input even

• standalone test of ZVRES, input / output directly from / to SGV common blocks

• separate tests of Marlin processors for ZVRES, ZVKIN, flavour tag input calculation

FORTRAN-LCIO interface used to write out lcio file from SGV, read in by Marlin process

and used to feed values into internal working classes of our package

results from those tests: Ben Jeffery’s talk in this session

• full-chain test of ZVRES + flavour tag + vertex charge using same setup

convert Marlin output to root & use analysis software previously developed for

FORTRAN setup

Tests using MarlinReco event reconstruction
• once interface from MarlinReco to our working classes is in place, will repeat full chain

()

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 29

Test of Marlin-ZVRES + Marlin flavour tag

good result for a first attempt, differences to be looked into in more detail

Comparison of MARLIN and FORTRAN at the Z-peak, identical input events

efficiency

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
u

ri
ty

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

b

c (b-bkgr)

open: FORTRAN

full: MARLIN

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 30

Areas needing further work

interfacing to event-input from MarlinReco-based event reconstruction
(for initial tests will only use track cheaters)

make code more robust by including handling of bad user input and other erro

system test of full chain (ZVRES + flavour tag + vertex charge)

• run using SGV input needs to be understood

• repeat tests using input from MarlinReco-based event reconstruction

general usage documentation (independent class documentation mainly complete)

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 31

Summary and outlook

Development and validation of the LCFI Vertex Package are far advanced.

A new Vertex class has been introduced into LCIO. Integration of our package in

MarlinReco is in progress. Running code from JAS environment to be investigat

to ensure interoperability of the reconstruction frameworks in this area (N Graf).

Interfacing to event-input from MarlinReco event reconstruction needs further w

First results from a full-chain run with SGV input are promising, but need to be

understood further. A full-chain test with MarlinReco reconstruction will follow.

The first release of the code is planned in a few weeks.

Detailed comparisons with MarlinReco input and quantitative exploration of

improvements from the ghost track algorithm will be the next steps after the rele

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 32

ZVTOP - Progress
Initial aim: replace FORTRAN ZVRES in SGV for testing

- allows comparison of intermediate algorithm states when working on
identical tracks

- new version can be verified to be at least as good as FORTRAN

SGV FORTRAN ZVRES Flavour Tag
tracks vertices

SGV FORTRAN ZVRES Flavour Tag
C++ ZVRES

Current Status

Add ZVKIN: SGV C++ ZVRES Flavour Tag
C++ ZVKIN

LCIO C++ ZVTOP LCIOFinally:

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 33

-1.5 -1 -0.5 0 0.5 1 1.5
0

100

200

300

400

500

600

tanh (MPt / 5 GeV)

joint prob, R phi, 1 Vtx

-1.5 -1 -0.5 0 0.5 1 1.5

je
ts

N

0

200

400

600

800

1000

1200

1400

joint probability
uds

c

b

Flavour tag
Vertex package will provide flavour tag procedure developed by R. Hawkings et
(LC-PHSM-2000-021) and recently used by K. Desch / Th. Kuhl as default

NN-input variables used:

• if secondary vertex found: MPt , momentum

of secondary vertex, and its decay length and

decay length significance

• if only primary vertex found: momentum and

impact parameter significance in R-φ and z for the

two most-significant tracks in the jet

• in both cases: joint probability in R-φ and z (estimator of

probability for all tracks to originate from primary vertex)

will be flexible enough to permit user further tuning of the input variables for the neural n

and of the NN-architecture (number and type of nodes) and training algorithm

b

c

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 34

Flavour tag and quark charge sign selection
aim of flavour tag: distinguish between b-jets, c- jets and light-quark / gluon jets

heavy flavour jets contain secondary decays, generally observed as secondary vertices

NN-approach to combine inputs; most sensitive: secondary vtx Pt-corrected mass & mome

for charged B-hadrons (40% of b-jets): quark sign can be determined from vertex charge

need to find all stable tracks from B-decay chain

probability of mis-reconstructing vertex charge small for both charged and neutral case

neutral B-hadrons require ‘charge dipole’ procedure from SLD still to be developed for I

Klaus Desch/ Thorsten Kuhl

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 35

Flavour tag purity vs efficiency at the Z-peak
K Desch/ Th Kuhl

efficiency

0.2 0.4 0.6 0.8 1

p
u

ri
ty

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b

c

c (b bkgr)

FORTRAN,

high statistics run

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 36

SGV

LCIO

ZVTOP

NEURAL
NETWORKING

CLASSES

LCIO

FLAVOUR TAG
ROUTINES

MARLIN

SGV

LCIO

ZVTOP

NEURAL
NETWORKING

CLASSES

LCIO

FLAVOUR TAG
ROUTINES

MARLIN

ECFA ILC workshop, Valencia, 9th November 2006 Ben Jeffery (Oxford) p. 37

interface SGV to

internal format

interface LCIO to

internal format
input to LCFI Vertex Package

output of LCFI Vertex Package
interface internal

format to SGV

interface internal

format to LCIO

ZVRES ZVKIN

ZVTOP:

vertex information

track attachment

assuming c jet

track attachment

assuming b jet

track attachment

for flavour tag

find vertex-

dependent

flavour tag

inputs

find vertex charge

find vertex-

independent

flavour tag

inputs

neural net flavour tag

