New results for four-loop tadpoles and
 $\mathcal{O}\left(G_{F} m_{t}^{2} \alpha_{s}^{3}\right)$ corrections to the ρ-parameter

Radja Boughezal
University of Würzburg, Germany

ILC workshop, Valencia 2006

In collaboration with Michal Czakon

Introduction and motivation

- ρ measures the relative strength of charged and neutral currents

$$
\rho=\frac{M_{W}^{2}}{c_{W}^{2} M_{Z}^{2}}=1 \quad \text { in } \quad \text { SM } \text { at tree level }
$$

Higher order corrections modify it into:

$$
\rho=\frac{1}{1-\Delta \rho} \quad \text { where } \quad \Delta \rho=\frac{\Sigma_{Z}^{T}(0)}{M_{Z}^{2}}-\frac{\Sigma_{W}^{T}(0)}{M_{W}^{2}}
$$

- $\Delta \rho^{(1)} \sim M_{t}^{2} \longrightarrow$ a sensitivity that was used in the indirect determination of M_{t}
- remarkable agreement between theoretical prediction and experimentally measured M_{t}
- bounds on M_{H} depend critically on the knowledge of M_{t}

Introduction and motivation

- leading universal corrections to ρ give the main contribution to M_{W} and $\sin ^{2} \theta_{\text {eff }}^{\text {lept }}$

$$
\Delta M_{W}=\frac{M_{W}}{2} \frac{c_{W}^{2}}{c_{W}^{2}-s_{W}^{2}} \Delta \rho \quad \text { and } \quad \Delta \sin ^{2} \theta \text { eeff }=-\frac{c_{W}^{2} s_{W}^{2}}{c_{W}^{2}-s_{W}^{2}} \Delta \rho
$$

- both are used in the indirect determination of m_{H}
- current exp. uncertainty $\delta M_{W}=34 \mathrm{MeV}, \quad \delta \sin ^{2} \theta_{\text {eff }}^{\text {lept }}=1.7 \times 10^{-4}$ ILC $\longrightarrow \delta M_{W}=6 \mathrm{MeV}, \quad \delta \sin ^{2} \theta_{\text {eff }}^{\text {lept }}=1.3 \times 10^{-5}$
- On-shell $\mathcal{O}\left(G_{F} M_{t}^{2} \alpha_{s}^{2}\right) \longrightarrow \Delta M_{W}=-10 \mathrm{MeV}, \Delta \sin ^{2} \theta_{\text {eff }}^{\text {lept }}=5 \times 10^{-5}$ $\Longrightarrow \mathcal{O}\left(G_{F} M_{t}^{2} \alpha_{s}^{3}\right)$ could improve the theoretical precision \ldots

Calculation

- Consider the contribution of $\binom{t}{b}$ for large $M_{t} \longrightarrow M_{b}=0$
- Only the axial current correlator contributes to $\Sigma_{Z}^{T}(0)$
- non-singlet Feynman diagrams: the external current couples to the same closed fermion loop

- singlet Feynman diagrams: external Z couple to two different closed fermion loops

Calculation

- Singlets
- appear for the first time at the 3-loop level
- require a special treatment because of their relation to the axial anomaly
- form a finite and gauge independent subset
- at the 3-loop level, in $\overline{M S}$, they are 20 times larger than the non-singlet piece
- $\Delta \rho_{\text {singlet }}^{(4)}$ Schröder \& Steinhauser 05
- needs 13 master integrals
. "numerical size of the result is surprisingly small" ...
\Longrightarrow definite conclusions require the non-singlet contribution to ρ

Calculation

- A complete evaluation of $\mathcal{O}\left(G_{F} M_{t}^{2} \alpha_{s}^{3}\right)$ to ρ requires:
- non-singlet $\Sigma_{Z}^{T}(0)$
- $\Sigma_{W}^{T}(0)$
- it goes in steps
- generation of diagrams: DiaGen M.Czakon
- algebraic reduction to master integrals: IdSolver M.Czakon
- calculation of the masters
- $\Sigma_{Z}^{T, \text { non-singlet }}(0)$ needs 13 masters \longrightarrow already available analytically and numerically
- $\Sigma_{W}^{T}(0)$ needs 63 masters
- 13 are available
- 10 factorisable / calculable in terms of Gamma functs
. 40 non-trivial new 4-loop single scale tadpoles to calculate

The 40 new masters

Linear difference equations for the masters (Laporta 01)

- raise arbitrarily a massive propagator to a symbolic power x

$$
B_{D_{1}}(x)=\int \frac{d^{d} k_{1} d^{d} k_{2} \ldots d^{d} k_{N_{k}}}{D_{1}^{x} D_{2} \ldots D_{N_{D}}} \quad \text { with } \quad D_{i}=k_{i}^{2}+m_{i}^{2}
$$

- use IBP identities to get

$$
\sum_{j=0}^{R} P_{j}(x) B_{D_{1}}(x+j)=F(x)
$$

. set of master functs satisfies a triangular system of diff. eqts, the simplest master satisfies a homogeneous diff. eqt.

- choices based on non-symmetric propagators lead to different difference eqts. Condition: $B_{D_{i}}(1)=B \Longrightarrow$ consistency check
- general solution for integer x

$$
B(x)=\sum_{j=1}^{R} a_{j} B_{j}^{(H O)}(x)+B^{(N H)}(x)
$$

Linear difference equations for the masters (Laporta 01)

- solve by making the ansatz:

$$
B^{(\alpha)}(x)=\left(\mu^{(\alpha)}\right)^{x} \underbrace{\sum_{s=0}^{\infty} a_{s}^{(\alpha)} \frac{\Gamma(x+1)}{\Gamma\left(x+1-k^{(\alpha)}+s\right)}}_{\text {factorial series }}=\left(\mu^{(\alpha)}\right)^{x} V^{(\alpha)}(x)
$$

- find the behaviour of the integral for large x then use the boundary condition to get a_{0}^{H}
- sum the factorial series at a large x then use the difference equation for $B(x)$ to compute $B(1)$
- instability of the recurrence relation limits our choice of x due to loss of precision

An example

$$
\underbrace{\prime-}_{x+4} \frac{\left(\left(x^{2}+(7 \varepsilon-3) x+12 \varepsilon^{2}-10 \varepsilon+2\right)\right.}{\left.\left(8 x^{2}+(16 \varepsilon+32) x+48 \varepsilon+24\right)\right)}
$$

- a difference equation of order 3

An example

- the full result is

$\prime \prime \prime$	
	$+0.875000000000000000000000000000 \varepsilon^{-4}$
	$+5.31250000000000000000000000000 \varepsilon^{-3}$
	$+24.1272857172567359185353492916 \varepsilon^{-2}$
	$+71.5869874700921357789204087564 \varepsilon^{-1}$
	+197.558371935133443514418819015
	$+6.41187248372530806306191468163 \varepsilon$
	$-1028.33128833387533834458667353 \varepsilon^{2}$
	$-16249.8777552641957747492917792 \varepsilon^{3}$
	$-65696.8989733875039196986140933 \varepsilon^{4}$

An example: convergence

$x_{\max }$	$s_{\max }$	ε^{-4}	ε^{-3}	ε^{-2}
10	500	$\underline{0.87497975239619656213}$	$\underline{5.3126079140557447774}$	$\underline{24.127107409952669894}$
10	1100	$\underline{0.87499959532770610508}$	$\underline{5.3125033841760243677}$	$\underline{24.127273308267639324}$
30	500	$\underline{0.87499999999999} 911820$	$\underline{5.3125000000000104701}$	$\underline{24.127285717256695507}$
30	1100	$\underline{0.87500000000000000000}$	$\underline{5.3125000000000000000}$	$\underline{24.127285717256735919}$
90	500	$\underline{0.87500000000000000000}$	$\underline{5.3125000000000000001}$	$\underline{24.127285717256735918}$
90	1100	$\underline{0.87500000000000000000}$	$\underline{5.312500000000000000}$	$\underline{24.127285717256735919}$

- stability of the digits requires a sufficiently high x and s

Implementation, running parameters and time

- Derivation of difference equations: $C^{++} /$Form
- highest order 4
- longest running time 52 hours on 1 CPU (a non-planar 9-liner)
- numerical solution of the difference eqts: Mathematica
- longest running time 40 hours on $1 C P U$ (a non-planar 9-liner)
- initial depth of epsilon expansion is 12, many terms cancel when using the recurrence relation for $B(x)$
- all the masters but three 9-liners were solved for

$$
\left.\begin{array}{l}
S_{\max }=900-1100 \\
X_{\max }=90
\end{array}\right\} \text { Provided at least } 30 \text { digits }
$$

- for the particular three 9-liners, we have weak convergence

$$
\left.\begin{array}{l}
S_{\max }=750-900 \\
X_{\max }=55
\end{array}\right\} \text { Provided up to } 23 \text { digits }
$$

Checks

- checks on the master integrals:
- Attaching x to different massive propagators leads to different master functs $B(x)$. For $x=1$ they all coincide with the original master integral \Longrightarrow an important internal check
- stability of the numerical coefficients in the ε-expansion checked by varying $S_{\text {max }}$
- Many masters were checked with sector decomposition method and Mellin-Barnes (MB-package M.Czakon 05)
- checks on the diagrams
- cancellation of the first power of the gauge-fixing parameter ξ
- agreement on the result of $\Delta \rho$ with the fully independent calculation of Chetyrkin et al hep-ph/0605201

Results: few 4-loop masters

- All the 40 4-loop single scale tadpole masters have been calculated:
- all the 5-, 6- and 7 -liners are provided up to ε^{4} with 30 significant digits
- all the 8- and 9 -liners (but three) are given up to ε^{3} with 30 significant digits

$$
\begin{aligned}
= & -0.250000000000000000000000000000 \varepsilon^{-4} \\
& -1.1250000000000000000000000000 \varepsilon^{-3} \\
& -3.32246703342411321823620758332 \varepsilon^{-2} \\
& -6.69920730307326055744986988775 \varepsilon^{-1} \\
& +30.0253835218317623192659472127 \\
& +254.111031964704093539375826207 \varepsilon \\
& +1805.36593366425290012409359932 \varepsilon^{2} \\
& +8898.24672362282959032538518673 \varepsilon^{3} \\
& +43751.2551818001444717625115350 \varepsilon^{4}
\end{aligned}
$$

Results: few 4-loop masters

$$
\begin{aligned}
= & +0.62500000000000000000000000000 \varepsilon^{-4} \\
& +4.1250000000000000000000000000 \varepsilon^{-3} \\
& +20.6694020171659560336324750416 \varepsilon^{-2} \\
& +74.2503544994774685337366210644 \varepsilon^{-1} \\
& +147.807870353419457006020027881 \\
& +467.918626785158952385003318864 \varepsilon \\
& -1988.53979380180044626102894892 \varepsilon^{2} \\
& -4066.0500495929160439936393130 \varepsilon^{3} \\
& -84210.538667468960167279985284 \varepsilon^{4}
\end{aligned}
$$

Results: few 4-loop masters

Results: few 4-loop masters

$=-6.72847056008568105547188977521$
$-26.0876465999666155389659770717 \varepsilon$

- 214.647717912411362028052727052 ε^{2}
$-613.715203096626075654874908838 \varepsilon^{3}$
$=\quad+0.473611472272364450$
$+1.09585342206826990 \varepsilon$
$+5.37764333252884269 \varepsilon^{2}$
$+8.82896457590640998 \varepsilon^{3}$

Results: On-shell non-singlet $\Delta \rho^{(4)}$

- On-shell 4-loop non-singlet result for ρ :

$$
\begin{aligned}
& \Delta \rho^{O S, 4 L}(\text { non-singlet })=3 X_{t}\left\{(\frac { \alpha _ { s } } { \pi }) ^ { 3 } \left[C_{F}^{3}(-0.7845479837)\right.\right. \\
& +C_{F}^{2} C_{A}\left(17.20096563-5.918835584 L_{t}\right) \\
& +C_{F}^{2} T_{F}\left(-0.4393186129+1.616070332 L_{t}+n_{l}\left(-8.740003239+1.616070332 L_{t}\right)\right) \\
& +C_{F} C_{A}^{2}\left(-30.95679757+13.0488891 L_{t}-1.802340431 L_{t}^{2}\right) \\
& +C_{F} C_{A} T_{F}\left(-0.5400590182-5.355886515 L_{t}+1.310793041 L_{t}^{2}\right. \\
& \left.\quad+n_{l}\left(24.8274162-9.998375300 L_{t}+1.310793041 L_{t}^{2}\right)\right) \\
& +C_{F} T_{F}^{2}\left(0.3035659457+0.09803506636 L_{t}-0.2383260074 L_{t}^{2}\right. \\
& \quad+n_{l}\left(0.7160711769+1.884247873 L_{t}-0.4766520149 L_{t}^{2}\right) \\
& \left.\left.\left.\quad+n_{l}^{2}\left(-3.448039206+1.786212806 L_{t}-0.2383260074 L_{t}^{2}\right)\right)\right]\right\}
\end{aligned}
$$

Results: On-shell and $\overline{M S} \Delta \rho$

$$
X_{t}=\frac{G_{F} M_{t}^{2}}{8 \sqrt{2} \pi^{2}}, \quad L_{t} \equiv \log \left(\frac{M_{t}^{2}}{\mu^{2}}\right)
$$

- $\overline{M S}$ and On-shell numerical results

$$
\begin{aligned}
\Delta \rho^{\overline{\mathrm{MS}}}=3 x_{t}\left[1-0.19325 \frac{\alpha_{s}}{\pi}\right. & +(\underbrace{-4.2072}_{\text {singlet }}+\underbrace{0.23764)}_{\text {non-singlet }}\left(\frac{\alpha_{s}}{\pi}\right)^{2} \\
& \left.+(-3.2866+1.6067)\left(\frac{\alpha_{s}}{\pi}\right)^{3}\right] \\
\Delta \rho^{\mathrm{OS}}=3 X_{t}\left[1-2.8599 \frac{\alpha_{s}}{\pi}\right. & +(\underbrace{-4.2072}_{\text {singlet }} \underbrace{-10.387}_{\text {non-singlet }})\left(\frac{\alpha_{s}}{\pi}\right)^{2} \\
& \left.+(7.9326-101.0827)\left(\frac{\alpha_{s}}{\pi}\right)^{3}\right]
\end{aligned}
$$

Results: scale dependence of $\Delta \rho^{(\overline{M S})}$

Results: scale dependence of $\Delta \rho^{(\text {On-shell })}$

On-shell

Conclusions

- New set of high precision numerical values of 4-loop single scale tadpoles is provided
- important building block in asymptotic expansions
. depth of expansion is enough for a 5-loop calculation
- The non-singlet contribution completes the 4-loop QCD correction to ρ
- in the $\overline{M S}$-scheme the singlet contribution is just twice larger than the non-singlet piece
- in the On-shell scheme the singlet part is 10 times smaller than the non-singlet contribution
- Using $\Delta \rho_{\text {on-shell }}^{(4)}=-3.5 \times 10^{-5}$, the shifts to M_{W} and $\sin ^{2} \theta_{\text {eff }}^{\text {lept }}$ are $\Delta^{(4)} M_{W}=-2 \mathrm{MeV}, \Delta^{(4)} \sin ^{2} \theta_{\text {eff }}^{\text {lept }}=1.15 \times 10^{-5}$
both are below the anticipated precision of future experiments
- Inclusion of the 4 L correction to ρ improves the stability of the prediction

