

 \rightarrow X, cm

Sandwich Cal. 1X₀ sampling $R_M \sim 1 cm$ Pad size ~ 1 cm^2

These efficiencies are parametrized and available for 0/2/20 mrad crossing angle, (If you would like to use ask Vladimir)

Not yet for 14 mrad

Quantitative estimates

P. Bambade et al. hep-ph/0406010

Smuon and Stau pair production in a WMAP favoured region (co-aanihilation region, small mass difference between stau and neutralino

Standard TESLA beam parameters, 0/20 mrad crossing angle, Simplified electron veto efficiency

Conclusion: Stau detection is no problem at small crossing angle for 20 mrad 25 % signal efficiency reduction

H.U. Martyn, hep-ph/0408226

$$e_L^+ e_R^- \to \tilde{\mu}_R \tilde{\mu}_R \to \mu^+ \tilde{\chi}_1^0 \, \mu^- \tilde{\chi}_1^0, e_L^+ e_R^- \to \tilde{\tau}_1 \tilde{\tau}_1 \to \tau^+ \tilde{\chi}_1^0 \, \tau^- \tilde{\chi}_1^0.$$

Standard TESLA beam parameters,
0/20 mrad crossing angle,
(3.5 mrad and 5.7 mrad lower acceptance cut)
Simplified electron veto efficiency

Conclusion: Stau detection is possible at small crossing angle background enhanced by a factor 2-3

V. Drugakov, Bangalore

Several beam parameter settings

	Nominal	LowQ	LargeY	LowP	
Bunch charge [10 ¹⁰]	2	1	2	2	
Number of bunches	2820	5640	2820	1330	
Gradient [MeV/m]	30				
$\gamma \epsilon_x / \gamma \epsilon_y$ [10 ⁻⁶ mrad]	10 / 0.04	10 /0.03	12/0.08	10/0.035	
β_x / β_y [mm]	21 / 0.4	12/0.2	10 / 0.4	10/0.2	
$\sigma_x / \sigma_y \text{[nm]}$	655 / 5.7	495 / 3.5	495 / 8.1	452 / 3.8	
$\sigma_z [\mu m]$	300	150	500	200	
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.03	2.01	2.00	2.05	
Table 1. Beam	and IP paramete	ers for various	beam parameter	configurations at	
$\sqrt{s} = 500 \text{ GeV}$	-				

Veto efficiencies for 2/20 mrad

Figure 1. The energy density of beamstrahlung remnants per bunch crossing as a function of position in the $r - \varphi$ plane at the a) 2 mrad and b) 20 mrad with DID field crossing angles.

Results

Stau pair production (previous parameters) After selection cuts: 20 signal events, 3×10^5 background Apply now electron veto:

Energy cut [C	JeV]	75	50	5
Nominal, 0 m	ırad	45	5	-
LowQ, 0 mra	d	40	0.1	L
LargeY, 0 mr	ad	50	9	
LowP, 0 mrad	1	364	321	1
Nominal, 20			349	9
,	Energy cut [GeV]	75	50	_
	Nominal, 0 mrad	45	5 0.	
	LowQ, 0 mrad	40	0.1	
	LargeY. 0 mrad	50	9	
	LowP. 0 mrad	364	321	
	Nominal, 20 mrad, DID	396	349	

Table 2. The number of unvetoed background events. The number of $\tilde{\tau}$ events is 20.

Conclusion:

In the cases of crossing angles of either 2 mrad or 20 mrad with Anti-DID field we expect the BeamCal performance similar to the head-on scheme, as the coresponding pairs deposition distributions are similar. In case of 20 mrad crossing angle with DID field we would have no chance to see $\tilde{\tau}$ production for this benchmark scenario.

My Conclusions: The electron veto capability of the forward calorimeters is essential for new particle searches with large missing energy and momentum For 20 mrad and DID field we have the 'worst case', means smallest 'reach area'.

For 14 mrad work is needed