LDC Detector Assembly Issues

Karsten Buesser

MDI Panel Phone Meeting 15. August 2006

Introductory Remarks

- August is not a particular convenient month in Europe to discuss technical issues
 - Everyone's on the beach
- I tried to discuss the thoughts presented here in this talk with some LDC people and some DESY people who were involved in the detector integration issues for TESLA
- No conclusive discussion has been done within the LDC community
- Basically all I will present is therefore my personal opinion

Starting Point

- Starting point is the engineering design which has been developed for the TESLA detector
- LC-DET-2001-045
- Assumptions:
 - Need a detector hall large enough to allow for a parking position for the detector which allows for independent beam operations during detector assembly and maintenance
 - Underground assembly of the detector

TESLA Detector Hall

- Hall size: 82m x 30m
- Beam position: 16/66m away from left/right wall
- Beam height: 8m above floor
- Crane hook: 19m above floor
- Access shaft: 9m x 16m
- Cranes: 2 x 80t

Opening Sequence

8 000

• Opening the detector for maintenance at the beam position:

K. Buesser

MDI Panel 15.08.2006

Opening Sequence II

K. Buesser

MDI Panel 15.08.2006

Opening Sequence III

K. Buesser

MDI Panel 15.08.2006

Maintenance Position ,on the beam'

Maintenance position allows access to the inner tracking system

Surface Assembly Issues

- Surface assembly and hall size are not necessarily correlated
 - Shortening the hall depends mostly on the question whether a detector parking position is needed or not
- Timing issues and surface assembly are however correlated
 - detector assembly is independent on civil construction!

Surface Assembly Cons

- CMS experience:
 - Detector commissioning cannot be done completely on the surface
 - Need for doubling of resources like cables, gas systems, cooling, etc
 - Commissioning takes place on surface as far as possible, break for lowering of the detector of several months, commence commissioning underground
 - ATLAS: started cosmic runs some time ago, gradually increases complexity by installing detector components
 - If interference between detector and machine construction is expected, a parking position underground might be needed also in case of surface assembly
 - Otherwise there must be a period (some months before the start) when the detector gets full control of the underground facility

Surface Assembly ,a la CMS'

- Assemble and commission detector parts as far as possible on surface
- Central yoke ring (shortened to ~2.7m) and coil probably have to be lowered together
 - depends on crane capacity underground
- Barrel calorimeter will probably also be installed before lowering
- Weight of this largest component: ~2000t
- Size: 13 x 7m

9.1 Weight of Detector Components

Component	Weight per Module	Number of Modules	Total Weight
Central Yoke Ring	-	1	~4000t
Cold Mass (Coil with Vacuum Tank and Cryostat)	-	1	~200t
HCAL Barrel	15.3t	2 x 16	~490t
HCAL End Caps	49t	2 x 4	~392t
ECAL Barrel	~2.83t	8 x 5	~113t
ECAL End Caps	5.18t	2 x 4	~42t
TPC and FCH	~5t	1	~5t
Sum Central Part			~5240t
Corner Half Shells	~1600t	4	~6400t

TESLA Numbers!

Minimal Requirements for Surface Assembly

- Assuming surface detector assembly and no need for independent detector parking position:
 - Hall size: 30 x 45m
 - Distance between beam and wall: 12.25m (14m half concrete wall) is somewhat tight
 - Yoke corners are 6m wide, have to slide back by ~6m to allow for the extraction of the calorimeter endcaps and the TPC
 - Concrete shielding outside of the yoke (additional 1m) can be made thinner on that side?
 - Biggest part: shortened barrel yoke ring mounted with coil and barrel calorimeter
 - Shaft size: 14 x 8m
 - Temporary crane: 2000t
 - Permanent crane (surface bottom): 120t (calorimeter endcap)
 - Hall crane (bottom): 80t

Summary

- There is at first glance no show-stopper to prepare LDC for surface assembly
- Detector maintenance can be done with the detector in the beam position
- Detector hall size is a question of the need for a parking position
- Timing issues favour surface assembly
- Detailed engineering design for LDC needs to be done!
- Surprises might come!
- Discussion with LDC community is still ongoing