GLD Surface Assembly

Y. Sugimoto KEK 2006.08.15

- Weight of GLD components
- GLD assembly scenarios
 - Scenario 1: Assemble mostly underground
 - Scenario 2: CMS style
 - Scenario 3: Something between 1 and 2

Weight of GLD components

- Return Yoke
 - Barrel (Baseline design)
 - Leakage field < 50 G @10m
 - 50-150 t/slab
 - 700 t/sector(30 deg)
 - 8300 t total
 - 15 OKU\ (1 OKU\ ~ 0.9 M\$)
 - Barrel (Previous design)
 - Leakage field = 90 G @10m
 - 50-72 t/slab
 - 540 t/sector
 - 6500 t total
 - 12 OKU\

- Endcap (Baseline design)
 - 20-370 t/slab(180 deg)
 - 2100 t/180 deg
 - 4160 t/side
 - 8300 t total
 - 15 OKU\
- Endcap (Previous design)
 - 20-160 t/slab
 - 1500 t/180 deg
 - 3000 t/side
 - 6000 t total
 - 11 OKU\

Relaxing the requirement for leakage field would reduce cost for return-yoke, exp.hall, etc.

- Calorimeter
 - Barrel (central)
 - 1100 t (HCAL)
 - 220 t (ECAL)
 - Barrel (edge)
 - 235 t/side
 - 470 t total
 - Barrel (total)
 - 1800 t
- Solenoid+Cryostat
 - 270 t

- Endcap
 - 220 t/side (HCAL)
 - 60 t/side (ECAL)
 - 280 t/side (H+E)
 - 560 t total

- Detector assembly building ready: t₀+3y
- Detector hall ready for detector: t₀+4y11m

from Martin Gastal's talk at VLCW2006

- If the cavern gets ready for detector at t₀+4y11m, only 2y+1m is left before machine commissioning, which seems too short
- BCD assumes 80 t crane in the cavern. This
 is too little for GLD (M_{solenoid} = 270 t)
- So, we need CCR anyway

- Surface assembly hall has 2000t non-traveling crane
- Detector is segmented into several large pieces < 2000t
- So, each segment of the detector has to crawl to the loading area by itself
- Then, CMS-like segmentation (divide the barrel into wheels) would be the only solution
- Possible problems in this method;
 - Can we get enough mechanical precision in assembly ?
 - Cryostat is supported only at the center. Mechanical strength to support 1800t CAL is not clear
 - Gaps for cables between wheels → Leakage field?
 - Surface assembly hall gets ready at t₀+3y. It would be impossible to assemble and test the whole detector in 1y11m.
 - We need larger access shaft (diameter>20m)

- Each of the surface assembly hall and the underground experimental hall is equipped with a relatively large capacity (>400t) overhead "traveling" crane
- Detector is assembled on surface up to few tens of segments lighter than the crane capacity. For example,
 - Barrel Yoke + muon detector: 12(φ) x 2(r) = 24 pieces (~350t/piece)
 - End Yoke + muon detector: $2(\text{side}) \times 4(\phi) \times 3(z) = 24 \text{ pieces } (\sim 350 \text{t/piece})$
 - Barrel CAL: 7 rings (260t/ring)
 - Endcap CAL: 2 (side) x 2 (ϕ) = 4 pieces (140t/piece)
 - Solenoid, TPC, FCAL, BCAL, and inner Si trackers are installed individually
- These segments are lowered to the cavern and assembled to form a complete detector

- Since muon detectors are installed in the surface assembly hall, the endcaps do not have to fully open. The wall only 12m from the beam line is acceptable.
- If the barrel part can move both along and normal to the beam line (probably possible by using air-pallet), the width of the experimental hall (32 m in the baseline design) can be somewhat smaller. (see next slides)
- Because less assembly work is done in the experimental hall than the Scenario-1, the size of the cavern could be still smaller
- Detailed assembly procedure will depend on the machine commissioning scenario
- In addition to the surface assembly hall, a large-area warehouse would be necessary to store many pre-assembled detector segments. No large-capacity crane is necessary in this warehouse if we use air-pallets to move the detector segments.

- If the cavern gets ready for detector at t₀+4y11m, only 2y+1m is left before machine commissioning. This period seems too short to assemble the detector totally underground.
- We absolutely need a large assembly hall on surface
- It is not clear for us whether we can assemble the detector exactly like CMS or not
- We would like to consider the assembly scenario in which the detector is segmented into smaller pieces than that in the CMS assembly scenario
- In that case, we need >400t overhead traveling crane in both the surface assembly hall and the underground experimental hall
- In addition to the surface assembly hall, a large-area warehouse would be necessary to store the pre-assembled segments
- We have to investigate more to determine the necessary size of the surface assembly hall and the underground experimental hall in our assembly scenario