2 mrad crossing-angle IR challenges

Philip Bambade LAL-Orsay

Mini-worshop of small x-angle design challenges

Orsay & Saclay, 19-20 October 2006

The baseline is now 14mrad/14mrad (14mrad was derived from the 20mrad and is technological easier and cheaper than the 2mrad)

Luminosity loss without crab-crossing (perfect conditions)

20 mrad \rightarrow L/L₀ ~ 0.2

Principle of 2 mrad extraction

- downstream diagnostics
- Collimators and optics for beam blow-up
- FD region: large-bore SC sextupoles, QD0 with g=160 T/m

Talks from yesterday's session

- Design challenges of the 2mrad scheme O. Napoly
- Extraction beam line design principles R. Appleby
- Collimation requirements
 - F. Jacksson
- Final doublet optimisation
 - R. Appleby
- Limits on SC final doublet magnets
 - G.-L. Sabbi
- Limits of RF deflectors and availability of other devices Y. Iwashita

Final Doublet optimisation

Magnet type	Bore radius, mm	Field at radius, T	Eff. length, m	type
Quad QD0	35	5.6	5.6 2.5	
Sextupole SD0	88	4.0	3.8	SC
Quad QF1	10	0.68	2.0	NC
Sextupole SF1	112	2.12	3.8	NC
SeptumQEX1A	113	1.33	3.0	NC

LC optimised luminosity \rightarrow trade-off between:

- total power Pelectrical
- beamstrahlung emission δ_{BS}
- vertical emittance ε_v
- (for given E_{CM} and power transfer efficiency η)

Post-IP transport needs large energy acceptance 0-2 mrad : bending & shared magnets \rightarrow harder

E (GeV)

60%

Snowmass final doublet losses (All powers in W)

500 GeV	Beam	QD0	SD0	QF1	SF1	
	Low P (cb)	7.6	0	0	470	
	Low P (rb)	0.39	0	0	0.10	
	High L (cb)	91.9	0	0	1400	
	High L (rb)	0.97	0	0	0.25	
1 TeV	Low P (cb)	756	0	7.6	95.4	
	Low P (rb)	1.2	0	0	0.34	
	High L (cb)	8431	0	190	878	
	High L (rb)	3.6	0	0.1	0.92	
	cb=charged	rb=radia	tive bhabha los	oha losses		

- Redesign of final doublet region of small crossing angle scheme using
 - NbTi SC magnets with g=180 T/m
 - Nb₃Sn SC magnets with g=250 T/m

 The optimised machine parameters for 500 GeV CoM give a much shorter QD0. The beam power losses are then (in W):

Beam	QD0	SD0	QF1	SF1
Low P (cb)	0	0	0	0
Low P (rb)	0.05	0.1	0	0
High L (cb)	0	4.1	11.6	0
High L (rb)	0.13	0.25	0.13	0

 The optimised machine parameters for 1 TeV CoM, with Nb₃Sn technology give losses (in W)

Beam	QD0	SD0	QF1	SF1
Low P (cb)	17.7	0	34	21
Low P (rb)	0.37	0	0.18	0.11
High L (cb)	277	81	161	256
High L (rb)	1.10	0	0.82	0.33

Also done for NbTi at 1 TeV, but not shown here

Max. pole-tip field assumed = 8.8 T 11 T \Rightarrow losses OK for Low Power ILC parameters

Name	Length [m]	Strength	Radial apertur e [mm]	Gradient [T/m]	Pole-tip field [T]
QD0	1.23	-0.1940 m ⁻¹	39	162	6.3
SD0	2.5	1.1166 m ⁻²	76	=	2.69
QF1	1.0	0.0815 m ⁻¹	15	70	1.02
SF1	2.5	-0.2731 m ⁻²	151	-	2.59

2mrad Losses - Radiative Bhabhas into QD0 (using SiD Solenoid Field)

- Tracking in BDSIM with shower development to give energy deposition
- Assumed Coil is 100% NbTi with density 5.6g/cm³ @ 4Kelvin from R=35mm to 200mm (i.e. no support structure or gaps between 4 coils, etc. accounted for).
- Using Tungsten liner with 3mm thickness (~1 radiation length), density = 19.3g/cm³
- Total energy deposits recorded per segment with showers tracked down to 10KeV (charged and neutral)

		Total Extracted Power [W]	Total Incident Power [W]	Total Power deposited in beampipe & Coils R<20cm [W]	Peak Power Density in Beampipe [mW/g]	Peak Power Density in NbTi Coils [mW/g]
cs11	No Liner	70.498	0.45 ± 0.01	0.27 ± 0.01	0.71 ± 0.03	1.90 ± 0.07
	Tungsten Liner		0.61 ± 0.02	0.13 ± 0.004	0.26 ± 0.01	0.11 ± 0.01
cs15	No Liner	161 27	1.07 ± 0.09	0.60 ± 0.05	1.60 ± 0.15	4.27 ± 0.41
	Tungsten Liner	101.57	1.44 ± 0.12	0.32 ± 0.03	0.61 ± 0.05	0.27 ± 0.02
cs21	No Liner	179.12	1.12 ± 0.07	0.65 ± 0.04	1.35 ± 0.08	4.11 ± 0.23
	Tungsten Liner		1.49 ± 0.09	0.34 ± 0.02	0.67 ± 0.04	0.30 ± 0.02
cs25	No Liner	402.02	3.61 ± 0.31	2.08 ± 0.18	4.41 ± 0.38	13.7 ± 1.2
	Tungsten Liner	403.03	4.95 ± 0.43	0.69 ± 0.07	1.40 ± 0.15	0.62 ± 0.07

Post-IP transport needs large energy acceptance 0-2 mrad : bending & shared magnets \rightarrow harder

Horizontal disrupted envelopes for 100% energy particles

Horizontal disrupted envelopes for 60% energy particles

Baseline lattice Dispersion

Baseline lattice Beta functions

Focus

- finalise optimisation of FD sextupoles interact with SC magnet experts
- revisit extraction line optics design, combining modular approach and dedicated (and possibly more aggressive) collimation
 - interact with warm magnet experts (non conventional ?)
- further W liner optimisation to ease SC power tolerance
- Iuminosity impact of not crabbing in "realistic conditions"
- minimal extraction line without post-IP diagnostics
- beamstrahlung cones and conservative clearance specs

Collider motivations

very small 0 – 2 mrad large 14 – 25 mrad

Insufficient effort so far (design, hardware R&D) Advanced developement

injection & extraction

challenges & remedies

- shared magnets \Rightarrow coupled design
- post-IP losses \rightarrow careful optics & collimation \rightarrow large magnet bores
 - \rightarrow electr. separators

separate channels

- large \mathcal{L} loss : < x z >
- \rightarrow crab-crossing (R&D)
- non-axial in solenoid
 - \rightarrow DID / anti-DID & post / pre-IP bumps

approach & risks

 emphasize post-IP beam • preserve pre-IP beam reflected background adds pre-IP constraints Both are valid viewpoints which can work...