

saclay

SC magnet developments at CEA/Saclay

Maria Durante Hélène Felice

CEA Saclay DSM/DAPNIA/SACM/LEAS

- Nb₃Sn quadrupole magnet model M. Durante
- Dipole design studies H. Felice
- ✤ Subscale Dipole H. Felice

Nb₃Sn Quadrupole Program Main Goals

- Get an experience in the Nb₃Sn technology keeping in mind the industrialization process
- Build a 1-m-long quadrupole magnet model, 56-mm single ÷ aperture, with no magnetic yoke
- Model design based on the design of LHC arc quadrupole magnets ÷

dapnia

saclay

Pole components

- Rutherford-type cable developed in collaboration with ALSTOM MSA
- Relying on available Nb₃Sn wires
 - 36 strands a 25-µm-thick stainless steel core

- Width : 15.1-mm
- Mid-thickness : 1.48 mm
- Keystone angle : 0.9°

- Strand Ø : 0.825 mm
 Jc (4.2K, 12T) : 750 A/mm2
- Effective filament \emptyset : 19 µm

Actual collaboration with ALSTOM MSA Jc (4.2K, 12T) : 2000 A/mm2

dani

Pole components

- Rutherford-type cable developed in collaboration with ALSTOM MSA
- Relying on available Nb₃Sn wires
 - 36 strands a 25-µm-thick stainless steel core

- Width : 15.1-mm
- Mid-thickness : 1.48 mm
- Keystone angle : 0.9°

- Strand Ø : 0.825 mm
- Jc (4.2K, 12T) : 750 A/mm2
- Effective filament $\underline{\emptyset}$: 19 µm
- Cable insulation relying on S2-glass fiber tape
- Angular and End wedges realized in Al-80%wt Cu
- End wedges insulation and inter-turn insulation made up of 0.1 - mm - thick mica foils

SC magnet development at CEA-Saclay

Saclay 20/10/2006

dapnia

Coil manufacturing

dapnja

saclay

- Each coil is equipped with 13 voltage taps
 (9 in the end parts, 4 in splice region)
- The fabrication of one coil takes about 2 months
- M. Durante H. Felice

Magnet assembling

 Magnet assembling process is similar the one for the apertures of LHC quadrupole magnets.

 Collaring will be realized at ACCEL, the German company charged of the manufacturing of the LHC quadrupole magnets

dan

Magnet manufacturing schedule

- 2 dummy coils have been manufactured to validate coil fabrication procedures
- These coils have been used to make collaring tests to validate magnet assembling procedure
- 4 coils relying on certificate cable have been manufactured
- A fifth coil is actually under winding
- If necessary we have components for a further coil

- Magnet assembling is foreseen for January 2007
- Cold mass assembling is foreseen for March 2007

dann

Cold tests - Phase I

dapnja

Cold tests of the magnet are foreseen for June – September 2007

Cold tests – Phase II

dapn<u>ia</u>

- In a second phase, the magnet will be tested in an external solenoidal field
- This part of studies and tests are carried out within the framework of the EUROTeV Design Study
- The return end of the quadrupole will be in the central field of the solenoid (4 T)
- The lead end of the quadrupole will be in the fringe field of the solenoid
- The studies for the vertical cryostat should start at the beginning of 2007

Quadrupole cold mass inside SEHT cryostat (B. Hervieu)

Context of the study

saclay

General context : - need of large aperture (above 88 mm) and high field (13-15T) superconducting magnets for LHC luminosity upgrade

- preparation of the next step with aperture above

130 mm

What the state of the art shows :

-NbTi has reached its limit with the LHC use of Nb_3Sn

-Nb₃Sn is stress sensitive (limit around 150 Mpa)

-Cos θ design produces large stresses on coil mid plane for high field and large aperture dipoles

Consequences :

Need to explore new dipole designs to reach high field in large aperture Need to understand the influence of the prestress on Nb₃Sn magnet training Need to better know the mechanical stress above it the Nb₃Sn is degraded

Mechanical behaviour of the windings

Mechanical behaviour of the windings

Subscale Dipole

Motivations and goals

saclay

-Study of the pre-stress influence on $\ensuremath{\text{Nb}_3\text{Sn}}$ coil training in a dipole configuration

- Racetrack coil design from LBNL Subscale Magnet Program

- Mechanical structure (collaboration CEA Saclay / LBNL) to allow variable pre-stress on coil

- -Assembly with key and bladders
- -Aluminum shell
- Axial rods

Collaboration with LBNL

- Racetrack coil delivery: LBNL (SC01 and SC02 coils)
- Design of a new external mechanical structure : collaboration LBNL / Saclay
- Mechanical Structure Manufacturing: CEA Saclay
- Instrumentation and Assembly : LBNL
- Tests : LBNL in June 2006

M. Durante

H. Felice

SD01 3D (II)

SD01 : magnetic model

SD01 : mechanical model

daphia

saclay

H. Felice

SD01: test result

dapnja

