Permanent Magnets

Y. Iwashita Kyoto University

PMQ with saturated iron pole

First prototype (fixed field)

Prototype PMQ

Measurement at SLAC

Double Ring Structure

The double ring structure

PMQ is split into inner ring and outer ring. Only the outer ring is rotated 90° around the beam axis to vary the focal strength.

Adjustable Permanent Magnet Quadrupole

Drawing

Prototype Magnet

Bore radius	1cm
Inner ring radii	In 1cm out 3cm
Outer ring radii	In 3.3cm out 5cm
Outer ring section length	1cm, 2cm, 4cm, 8cm
Physical length	23cm
Pole material	Permendur
Magnet material (inner ring)	NEOMAX38AH
Magnet material (outer ring)	NEOMAX44H
Integrated gradient (strongest)	24.2T
Integrated gradient (weakest)	3.47T
Int. gradient step size	1.4T

Photos

Magnetic Center Movement

Magnetic Center moves by tens of micron when the strength was changed.

Demagnetization by Radiation

Energy deposit

	GLD	SiD	SiD(by Takashi)	<u>neutro</u> n
BeamCAL	_17mW	13mW	29mW	
QDO	94mW	97mW	′147mW	, 10 ⁵ [n/cm ² s]
SD0	11mW	11mW	/11mW	
QF1	16mW	18mW	15mW	
SF1	0.4mW	/0.3mW	/ 1mW	

very preliminary results by T.Abe (university of Tokyo), in private communication

Demagnetization by 14MeV neutron

Magnet	Demag. ratio [/1x10 ¹³ n/cm ²]	iHc [Oe]
47H	10.2%	
44H	1.8%	16
39SH	0.7%	21
32EH	0.3%	30

T. Kawakubo, et al., The 14th Symposium on Accelerator Science and Technology, Tsukuba, Japan, November 2003, pp. 208-210, in Japanese,

http://conference.kek.jp/sast03it/WebPDF/1P027.pdf

Continuous 1 mo. operation may cause about 0.01[%] of (reversible?) demagnetization on NEOMAX 32EH

Integrated strength is reduced by Solenoid field because PMQ has pole (vanadium permendur). Back coil and/or some shield is needed.

Recent Modification

Demonstrate a higher field gradient by reducing the bore size from ø20mm down to ø15mm.

Temperature compensation of the inner ring; 1 mm (left) and 1.6 mm (right) MS-1 trapezoidal plates are seen in a 2cm space between magnets.

Rotating Coil Stand

What's next?

- Finish magnetic field measurement system
- Fabricate third model
- Sextupole?
- Octpole?
- more?

Rotating PMSx for cold neutrons

