Limits of SC Final Doublet Magnets

Workshop on Design Challenges of Small-angle IR LAL-Orsay, October 19, 2006

Gian Luca Sabbi

Gian Luca Sabbi

2 mrad Magnets

Magnet type	Bore radius, mm	Field at radius, T	Eff. length, m	Qty
Quad QD0	35	5.6	2.5	2
Sextupole SD0	88	4.0	3.8	2
Quad QF1	10	0.68	2.0	2
Sextupole SF1	112	2.12	3.8	2
SeptumQEX1A	113	1.33	3.0	2

Conductor Options

Gian Luca Sabbi

RDR approach (Vancouver)

- IR magnets designs are based on 1.9K NbTi technology developed for first-generation LHC IR
- *Preliminary* analysis (VI. Kashikhin & A. Zlobin) indicates that LHC-IR type 70-mm NbTi quadrupole magnet design (MQXB) is adequate to meet QD0 requirements
- Sextupole *preliminary* design (Vl. Kashikhin) is also derived from MQXB experience and parameters (strand/cable, mechanical support concept etc) and meets specs

Reference Quad Design: LHC MQXB

Features/Parameters

- Aperture 70 mm
- NbTi @ 1.9K
- Self-supporting collar

Coil inner diameter	70 mm
Magnetic length	5.5 m
Operating temperature	1.9 K
Nominal gradient	215 T/m
Nominal current	11950 A
Cold bore diameter OD/ID	66.5/62.9 mm
Peak field in coil	7.7 T
Quench field	9.2 T
Stored energy	1360 kJ
Inductance	19.1 mH
Overah protection	Quench heaters,
Quenen protection	two independent circuits
Cable width, cable 1/2	15.4/15.4 mm
Mid-thickness, cable 1/2	1.456/1.146 mm
Keystone angle, cable 1/2	1.079/0.707 deg.
No of strands, cable 1/2	37/46
Strand diameter, cable 1/2	0.808/0.650 mm
Cu/SC Ratio, cable 1/2	1.3/1.8
Filament diameter, cable 1/2	6/6 μm
j _c , cable 1/2 (4.2 K and 5 T)	2750/2750 A/mm2
Mass	5700 kg

QD0 Design (VI. Kashikhin)

There is 0.9 T field margin assuming 2.7 T detector's background field

Gian Luca Sabbi

Large aperture sextupole (VI. Kashikhin)

Shell type coil sextupole with cold iron

Design close to LHC IR Quadrupoles

Coil ampere-turns	343 kA
Current	7 kA
Calculated strength	519.2 T/m ²
Coil maximum field	6.2 T
Iron core field (max)	3.8 T
Field energy	376 kJ/m
Lorentz force, Fx	56.5 t/m
Lorentz force, Fy	-83.2 t/m
Number of turns	22(inner) + 27(outer)
NbTi Superconducting cable	LHC IR inner
Jc at B=5 T, 4.2	2750 A/mm ²
Strand diameter	0.808 mm

Open Issues for NbTi approach

- Required aperture has increased in later versions of the optics
- Additional bore space may be needed for corrector coils
- Peak coil fields will increase when detailed 3D effects, interaction with solenoid and anti-solenoid are considered
- ⇒ It appears that NbTi design margins are sufficient to take these effects into account, but detailed analysis is needed
- More detailed calculations of magnetic center motion (SC magnetization, Lorentz forces, mechanics, iron saturation and hysteresis, etc)
- \Rightarrow present estimate is 1-5 µm magnetic center stability
- ⇒ need to develop correctors, optimize magnet movers for larger magnet weight/size

Alternative approach using Nb₃Sn

- LARP R&D status: first Technology Quad (TQ) achieved ~200 T/m in 90 mm aperture; second TQ ready for test; third TQ under fabrication
- After optimization, Technology Quads should provide up to 250 T/m
- LARP R&D Goal: 300 T/m in 90 mm aperture for High-Gradient Quad (HQ) by 2009
- Nb₃Sn quad development also underway at CEA, with ILC-relevant features

Potential advantages: gradient/bore/length; thermal margin; 4.2K operation Note: specify/evaluate SC quads based on aperture & gradient, not pole field Typical gradients for Nb₃Sn should be 200-250 T/m in 90 mm bore (without taking into account solenoidal field)

Issues:

- Support structure designs for high-performance, brittle conductor presently require large transverse size
- Effect of persistent currents on magnetic center stability
- Uncertainties in performance limits and cost

Goal: investigate viability of Nb₃Sn quads for the LHC luminosity upgrade

1. Capability to deliver predictable and reproducible performance:

TQ (Technology Quads, 2005-07) $D = 90 \text{ mm}, L = 1 \text{ m}, G_{nom} > 200 \text{ T/m}$

2. Capability to scale-up the magnet length:

LQ (Long Quadrupoles, 2008-09) D = 90 mm, L = 4 m, G_{nom} > 200 T/m

3. Capability to reach high gradients in large apertures:

HQ (High Gradient Quads, 2008-09) D = 90 mm, L = 1 m, $G_{nom} > 250$ T/m

Oct 25, 2005	Туре	Length	Gradient	Aperture	FY05	FY06	FY07	FY08	FY09
		[m]	[T/m]	[mm]					
MODEL MAGNETS									
Technology Quad (TQ)	cos(2θ)	1	> 200	90		3N+1R	2N+1R		
Long Quad (LQ)	cos(2θ)	4	> 200	90				1N	1N
High Gradient Quad (HQ)	cos(2θ)	1	> 250	90					2N
SUPPORTING R&D			Peak Field [⊺]					
Sub-scale Quad (SQ)	block	0.3	10-11	110	1N+1R	1N+1R	1N+1R	1N	
Short Racetrack (SR)	block	0.3	10-12	N/A		1N	1N	1N	
Long Racetrack (LR)	block	4	10-12	N/A			2N+1R		

<u>Conductor</u> :	 strand (optimal design, critical current at high field) cable (limits on maximum width & keystone angle)
<u>Magnetic</u> :	 number of layers (cable design, winding issues) use of wedges, conductor grading, end field optimization
<u>Mechanical</u> :	 collar-based vs. shell-based structure structure and coil alignment end axial support
<u>Integration</u> :	 coordination with model magnet, supporting R&D coordination with IR magnets study fabrication, cost and schedule considerations

- target parameters, design features, R&D plan

Coil Geometries

Parameter	Cos20 (2L)	Cos2θ (4L)	Block (2L)	Racetrack (4L)
G _{ss} (T/m) (*)	245	265	230	234
b _{6, 10, 14, 18} @ <u>22 mm</u>	< 0.05	< 0.05	< 0.05	< 0.07
Inductance (mH/m)	4.9	23.7	4.8	14.2
J _{cu} ^(ss) (A/mm ²)	1.5	1.4	1.5	1.5
SC area (cm ²)	46.5	48.5	47.8	51.4

(*) $J_c(12T, 4.2K) = 2.4 \text{ kA/mm}^2$ and $T_{op} = 1.9 \text{ K}$; actual yoke geometry; 90 mm aperture at the main quadrupole axes

- All designs have same coil aperture on the magnetic mid-planes (x & y axis)
- Resulting design harmonics are within 0.07 units (22 mm reference radius)
- Fabrication tolerances will dominate with respect to design harmonics:

		,
n	$< b_n > \pm \delta b_n$	$< a_n > \pm \delta a_n$
3	0.00 ± 1.66	0.00 ± 1.34
4	0.00 ± 1.25	0.00 ± 1.29
5	0.00 ± 0.65	0.00 ± 0.65
6	0.21 ± 0.97	$\textbf{-0.03} \pm \textbf{0.19}$
7	0.00 ± 0.12	0.00 ± 0.10
8	0.00 ± 0.08	0.00 ± 0.05
9	0.00 ± 0.04	0.00 ± 0.04
10	-0.01 ± 0.04	0.00 ± 0.04

MQXB vers. 3.2 (17 mm)

- Field quality and bore components (absorbers etc.) determine useful aperture
- Using same coil aperture on the magnetic mid-planes is ok for comparison

Cross-section Comparisons

Pre-conditions for comparison:

- Same current density. How to account for cabling/stress degradation
- Strand parameters (diameter, cu/sc): consistent (same) and practical
- Cable parameters (no. str., angle, compact.): consistent (same) & approved
- Iron yoke: same distance from coil and magnetic properties

Criteria for comparison:

- Maximum gradient
- Coil stress distributions
- Practicality, cost and schedule: strand procurement, use of TQ tooling (coils)
- Winding/Fabrication issues: minimum radii, spacer design, radial placement
- Complications vs. R&D interest/features
- Coil volume, Quench protection, Field quality, ...

Reference cross-sections

Conductor and Cable Parameters

Parameter	Unit	HQ1		Н	Q2
		Inner	Outer	Inner	Outer
Strand diameter	mm	0.7	0.7	0.85	0.7
Cu/non-Cu ratio		0.87	0.87	0.87	0.87
No. strands		27	27	23	27
Cable width (bare)	mm	10.05	10.05	10.05	10.05
Mid-thickness (bare)	mm	1.26	1.26	1.54	1.26
Keystone angle	deg	1.0	1.13	1.40	1.13
Insulation thickness	mm	0.125	0.125	0.125	0.125
No. turns/octant		34	52	32	38
Conductor area/octant	cm^2	35.3	54.0	41.8	39.5

Performance Parameters

Parameter	Symbol	Unit	HQ1	HQ2
Short sample gradient [*]	G_{ss}	T/m	308	317
Short sample current [*]	I_{ss}	kA	10.7	12.6
Coil peak field	$B_{pk}(I_{ss})$	Т	15.6	15.8
Copper current density	$J_{cu}(I_{ss})$	kA/mm ²	2.2/2.2	2.1/2.6
Inductance	$L(I_{ss})$	mH/m	24.5	18.0
Stored energy	$U\left(I_{ss}\right)$	MJ/m	1.3	1.4
Lorentz force/octant (r)	$F_r(I_{ss})$	MN/m	1.7	1.7
Lorentz force/octant (θ)	F_{θ} (I_{ss})	MN/m	-6.0	-6.1
Average coil stress (θ)	$\sigma_{\theta}\left(I_{ss} ight)$	MPa	150	152
Dodecapole (22.5 mm)	b_6		-0.2	0.0
10-pole (22.5 mm)	b_{10}		-0.05	-0.92

(*) Assuming $J_c(12 \text{ T}, 4.2 \text{ K}) = 3.0 \text{ kA/mm}^2$; operating temperature $T_{op}=1.9\text{ K}$

Coil Stresses

LORENTZ STRESS AT 300 TESLA/METER (MPA)

Coil	ANSYS	5 (Fig 3)	Mid-plane stress: $\Sigma F_{\theta}/(\text{layer width})$				
Design	L1&2	L1&2 L3&4		L2	L3	L4	
HQ1	176	167	139	98	179	150	
HQ2	178	131	148	143	159	114	

Mechanical Structures

TQC

- Stainless steel collars and skin
- Control spacers to limit pre-load
- End support plates, no pre-load

TQS

- Aluminum shell over iron yoke
- Assembly with bladders and keys
- Aluminum rods for axial pre-load

Coil End Optimization

	Offsets, mm					Offsets, mm				ı,		B _p ^{er}	^{id} , T	
№	BL 1	BL 2	BL 3	BL 4	Yoke	End lengtl mm	BL 1	BL 2	BL 3	BL 4				
9	380	371	355	328	328	97.4	13.96 (-1.50) [-9.7%]	13.43 (-2.03) [-13.1%]	13.47 (-0.67) [-4.7%]	13.10 (-1.04) [-7.3%]				

ILC IR Workshop, October 19, 2006

Saturation Effects

ILC IR Workshop, October 19, 2006

Gian Luca Sabbi

Racetrack Quadrupoles

Main features:

- Two double-layer racetracks/quadrant
- (One) flat cable, simple coil ends
- Same structure/assembly concept
- No conductor at the midplane
- Minimum end radius 12 mm
- Separation of high field/stress points

Design issues:

- Bore plate support requirements
- Design of the mid-plane wedge

<u>Results</u>:

• Viable alternative with good potential

Quadrupole Designs for the LHC IR

Summary

- Large bore 2 mrad IR superconducting magnets appear to be feasible
- Further analysis, R&D and prototyping are needed to refine the performance expectations and cost estimation

Next steps:

- <u>NbTi</u>: detailed 3D magnetic and mechanical analysis (including effect of anti-solenoid, corrector package, possibly larger aperture, liner)
- <u>Nb₃Sn</u>: develop coil and structure designs tailored to the specific needs of ILC: focus on magnetic center positioning and small transverse size, relax requirements on higher harmonics, design for required aperture and gradient, interaction with detector solenoid
- Need to perform self consistent calculations (backgrounds, heat loads)
- Installation & maintenance procedures (combined detector/magnets)

Acknowledgement

Shlomo Caspi, Paolo Ferracin, Vladimir Kashikhin, Vadim Kashikhin, Igor Noviski, John Tompkins, Alexander Zlobin