Physics and collider motivations for small crossing-angle IR

Philip Bambade LAL-Orsay

Mini-worshop of small x-angle design challenges

Orsay & Saclay, 19-20 October 2006

Collider motivations

very small 0 – 2 mrad large 14 – 25 mrad

injection & extraction

challenges & remedies

- shared magnets
 ⇒ coupled design
- post-IP losses
 → careful optics & collimation
 - \rightarrow large magnet bores \rightarrow electr. separators

separate channels

- large *L* loss : < x z >
- \rightarrow crab-crossing (R&D)
- non-axial in solenoid
- → DID / anti-DID & post / pre-IP bumps

approach & risks

- preserve pre-IP beam
 reflected background
 add
 - emphasize post-IP beam
 - adds pre-IP constraints

Both are valid viewpoints which can work...

Luminosity loss without crab-crossing (perfect conditions)

20 mrad \rightarrow L/L₀ ~ 0.2

Collider motivations

very small 0 – 2 mrad large 14 – 25 mrad

injection & extraction

challenges & remedies

- shared magnets
 ⇒ coupled design
- post-IP losses

 → careful optics & collimation
 → large magnet bores
 → electr. separators

separate channels

- large \mathcal{L} loss : < x z >
- \rightarrow crab-crossing (R&D)
- non-axial in solenoid
 → DID / anti-DID & post / pre-IP bumps

approach & risks

- preserve pre-IP beam
 reflected background
 - emphasize post-IP beam
 - adds pre-IP constraints

Both are valid viewpoints which can work...

anti-DID

 \downarrow

×~2

Plain solenoid Solenoid with DID Realistic field maps (plus simplified quadrupoles)

Without DID IP y angle ~ 100 μrad IP y offset ~ - 20 μm

spin precession ~ 60 mrad if uncorrected \rightarrow ~ 0.2 % depolarization with perfect beams (or else larger)

DID ---- anti-DID

DID defocuses pairs

⇒ more backscattered backgrounds

⇒ degraded small angle veto (C. Grah)

20mrad DID

anti-DID: pre / post-IP trajectory bumps are needed to control Y and Y' at IP

(A. Seryi)

2 examples choosing to zero either Y or Y' with QD0 offsets

Need simultaneous (large) QD0 & QF1 offsets to zero both Y and Y'

Collider motivations

very small 0 – 2 mrad large 14 – 25 mrad

injection & extraction

challenges & remedies

- shared magnets \Rightarrow coupled design
- post-IP losses \rightarrow careful optics & collimation
 - \rightarrow large magnet bores \rightarrow electr. separators

separate channels

- large \mathcal{L} loss : < x z >
- \rightarrow crab-crossing (R&D)
- non-axial in solenoid
 - \rightarrow DID / anti-DID & post / pre-IP bumps

approach & risks

• preserve pre-IP beam emphasize post-IP beam reflected background adds pre-IP constraints Both are valid viewpoints which can work...

Collider motivations

very small 0 – 2 mrad large 14 – 25 mrad

injection & extraction

challenges & remedies

- shared magnets \Rightarrow coupled design
- post-IP losses \rightarrow careful optics & collimation \rightarrow large magnet bores \rightarrow electr. separators

separate channels

- large \mathcal{L} loss : < x z >
- \rightarrow crab-crossing (R&D)
- non-axial in solenoid \rightarrow DID / anti-DID & post / pre-IP bumps

approach & risks

 preserve pre-IP beam emphasize post-IP beam reflected background adds pre-IP constraints Both are valid viewpoints which can work...

Post-IP transport needs large energy acceptance 0-2 mrad : bending & shared magnets \rightarrow harder

Horizontal disrupted envelopes for 60% energy particles

Collider motivations

very small 0 – 2 mrad large 14 – 25 mrad

Insufficient effort so far (design, hardware R&D) Advanced developement

injection & extraction

challenges & remedies

- shared magnets \Rightarrow coupled design
- post-IP losses \rightarrow careful optics & collimation \rightarrow large magnet bores
 - \rightarrow electr. separators

separate channels

- large \mathcal{L} loss : < x z >
- \rightarrow crab-crossing (R&D)
- non-axial in solenoid
 - \rightarrow DID / anti-DID & post / pre-IP bumps

approach & risks

 emphasize post-IP beam • preserve pre-IP beam reflected background adds pre-IP constraints Both are valid viewpoints which can work...

Physics argument 1 : SUSY→ hermeticity Detection of $l = \tilde{\mu}, \tilde{\tau}$ sleptons for small Δm P.B. et al. hep-ph/0406010 signal major background : $\gamma\gamma$ $ee \rightarrow l \chi^0 l \chi^0$ $ee \rightarrow (e)(e) l l$ **σ** ~ 10 fb $\sigma \sim 10^6$ fb Transverse view

Near threshold $E_l = \gamma (1 \pm \beta) (m_l^2 - m_{\chi}^2) / 2 m_l^2 \sim \Delta m \gamma (1 \pm \beta)$ $\gamma \gamma$ background \rightarrow must tag spectator electron (e.g. for $\Delta m=5$ Gev): $\theta \sim \Delta m \gamma (1 - \beta) / E_{beam} \times factor \sim 5-10$ mrad (factor = 1 < 1 for $\mu \tau$)

Dark Matter \leftrightarrow SUSY \leftrightarrow LHC + LC

WMAP cosmic microwave background radiation measurement lead to : $\Omega_{total matter} h^2 = 0.134 \pm 0.006$ and $\Omega_{baryon} h^2 = 0.023 \pm 0.001$ PDG July 2004

 \rightarrow mSUGRA with WMAP constraint 0.094 < Ω_{DM} h² < 0.129 (2 sigma)

M. Battaglia et al. Eur.Phys.J.C33:273-296,2004

Model	A'	B'	C'	D'	E'	F'	G'	H'	I'	J'	K'	L'	M'
M1/2	600	250	400	525	300	1000	375	935	350	750	1300	450	1840
m0	107	57	80	101	1532	3440	113	244	181	299	1001	303	1125
$\tan\!\beta$	5	10	10	10	10	10	20	20	35	35	46	47	51
μ	773	339	519	-663	217	606	485	1092	452	891	-1420	563	1940
$m\chi$	242	95	158	212	112	421	148	388	138	309	554	181	794
me_R, μ_R	251	117	174	224	1534	3454	185	426	227	410	1109	348	1312
$\mathrm{m} au_{1}$	249	109	167	217	1521	3427	157	391	150	312	896	194	796
$\tau_1 - \chi$	7	14	9	5	1409	3006	9	3	12	3	342	13	2
$\Omega_{DM}h^2$	0.09	0.12	0.12	0.09	0.33	2.56	0.12	0.16	0.12	0.08	0.12	0.11	0.27

→ for quasi mass-degenerate neutralino (χ) and slepton (τ), both $\chi\chi$ and $\chi\tau$ (co-)annihilations combine to regulate the amount of relic DM → N(τ) / N(χ) ~ exp(-20 Δ m/m) ~ 1 $\Rightarrow \Delta$ m < 10 GeV and m < 400 GeV → attractive mechanisms also beyond mSUGRA D.Hooper et al. Phys.Lett.B562(2003)18

Preliminary $\tilde{\mu}$ result benchmark point D' with $\Delta m_{\mu-\gamma}^{\prime} = 12 \text{ GeV}$

After requiring $N_u=2$

Normalized for L=500fb⁻¹

P.B. et al. hep-ph/0406010

signal efficiency ~ 80% spectrum end-points preserved

Mass extraction from endpoints : $\delta m_{su} = 0.18$ GeV and $\delta m_{\gamma} = 0.17$ GeV $\Delta m = 12 \text{ GeV} \Rightarrow \text{assumed tagging down to } \theta \sim 25-30 \text{ mrad}$

Preliminary $\tilde{\tau}$ results benchmark point D' with $\Delta m_{\tau-\chi}^{2} = 5$ GeV

P.B. et al. hep-ph/0406010H.-U. Martyn hep-ph/0408226

More difficult \rightarrow Missing energies from neutrinos, \rightarrow Very soft final state \rightarrow electron tagging down to $\theta \sim 5$ mrad

Two complementary strategies :

i. For large signal cross section and $2m_{stau} \ll E_{cm}$ \rightarrow end-point method

ii. For small signal cross section and $2m_{stau} \sim E_{cm}$ \rightarrow event counting method

Main selection cuts for τ

Z. Zhang

- 1. Veto energetic forward electrons/photons
- 2. Number of charged tracks : 1 or 3 prongs, no 2 muons, charge conservation
- 3. $15^{\circ} < q_{thrust} < 165^{\circ}$, acoplanarity angle $< 160^{\circ}$
- 4. $P_{max} < 7 \text{ GeV}, P_{Tmiss} > 2.5 \text{ GeV}$
- 5. ρ_T : P_t sum w.r.t. the thrust axis in transverse plane to the beam > 2.75 (or 2) GeV (P_{Tmiss} dependent)
- 6. Azimuthal cut on ρ_T in the case of 20mrad crossing-angle

Assumed ideal reconstruction in detector acceptance (modeled in SGV) Assumed ideal electron/photon veto down to 3.2mrad for $P_t > 0.8$ GeV

Preliminary $\tilde{\tau}$ resultP.B. et al. hep-ph/0406010benchmark point D' with $\Delta m_{\tau-\chi}^{*} = 5$ GeV

Thrust axis angle in 3-dim

 ΣP_T wrt thrust axis in the transverse plane Azimuthal dependence of the transverse momentum

Moderate effect of 2nd hole after additional cut

	head-on	crossing-angle
efficiency	~ 11 %	~ 8 %

Luminosity, E_{CM} and efficiency optimization benchmark point D' with $\Delta m_{\tilde{\chi}_{-\chi}} = 5 \text{ GeV}$ $\tilde{\tau}$ mass precision wrt efficiency effect from 2nd hole only

Relative $\tilde{\tau}$ mass precision from cross-section measurements near the production threshold with negligible background

Mass measurement in case of background

Mass precision degrades when background contribution increases Veto efficiency & analysis cut optimization essential

High integrated luminosity will always help

Stau mass threshold measurement for small stau-neutralino mass differences (e.g. 5 GeV)

BeamCal veto for dominant $\gamma\gamma$ background strongly affected by crossing-angle and ILC beam parameters

Figure 1. The energy density of beamstrahlung remnants per bunch crossing as a function of position in the $r - \varphi$ plane at the a) 2 mrad and b) 20 mrad with DID field crossing angles. (V. Drugakov)

Figure 2. Left: Electron energy and spatial distribution of the 2-photon background events passed all selection cuts except the BeamCal veto. Right: The efficiency to veto an electron of energy 75, 150, 250 GeV as a function of the radius in the BeamCal.

Stau mass threshold measurement for small stau-neutralino mass differences (e.g. 5 GeV)

Energy cut [GeV]	75	50
Nominal, 0 mrad	45	5
LowQ, 0 mrad	40	0.1
LargeY, 0 mrad	50	9
LowP, 0 mrad	364	321
Nominal, 20 mrad, DID	396	349
Table 2. The numb (V. Drugakov & Z. Zhang)	er of un-vetoed background events. The numb	er of $\tilde{\tau}$ events is 20.
Jominal + small	x-angle \rightarrow S/N ~ 4	

Nominal + large x-angle & anti-DID \rightarrow S/N ~ 2-3

not OK for Low Power or large x-angle & DID

 \rightarrow also study measure stau mass from spectrum above threshold (U. Martyn) ?!

Physics argument 2

Energy and polarization from beambased measurements

SPECTROMETRY pre – IP \rightarrow all designs

 $\delta E/E \sim (1-2) \times 10^{-4}$

linac E spread with other pre-IP device

post – IP : a bit more difficult with small θ_{c}

δE/E ~ (1 – 2) × 10⁻⁴
+ linac E spread
+ dL/dE
also from Bhabha analyses

POLARIMETRY pre – IP \rightarrow all designs

δP/P ~ (2.5 – 5) × 10⁻³
Compton scattering
+ extrapolation
optics constraints

post – IP : a bit more difficult with small θ_c

 $\delta P/P \sim (2.5 - 5) \times 10^{-3}$ Compton scattering + extrapolation

clearance from spent beam probes beam-beam effects

How important are additional post – IP spectrometer and polarimeter? Different systematics ! Errors $\rightarrow \sim 1/\sqrt{2}$ Beam-beam effects + correlations Physics needs : $E \stackrel{\leq 2 \times 10^{-4} \text{ }}{_{\leq 5} \times 10^{-5} \text{ }}{_{M_W}}, A_{LR} P \stackrel{\sim 5 \times 10^{-3} \text{ searches}}{_{\leq 2} \times 10^{-3} \text{ HE SM tests}}$ $< 1 \times 10^{-3}$ GigaZ Precision of each pre- & post-IP measurement $(2.5-5) \times 10^{-3}$ $(1-2) \times 10^{-4}$

Will we really afford both pre + post-IP ?

Full beam-beam effect ~ 3 - 4 × lumi-weighted

Post-IP can compare with / without collisions
Post-IP "magnifying glass" for beam-beam effect
Real conditions : must correlate to offsets, currents,...

Detector argument

TPC tracking \rightarrow B field to 0.0005 to control distortions

DID / anti-DID does not change the requirement to do a precise mapping, though it may complicate the procedure as several settings of DID / anti-DID must be foreseen

DID / anti-DID setting required to be kept fixed during data taking in order not to require constantly redoing the track based determination of field distortions \rightarrow not a knob to tune !

It may be tricky to simultaneously optimise beam backgrounds, beam steering, hermeticity with DID / anti-DID and the keep it fixed \rightarrow operation too constrained ?

Conclusion

Physics and detector slightly favour small crossing-angles over large ones (in my opinion), but the arguments are not overwhelming :

"small crossing-angle is of course preferred but we can live with a large crossing-angle..." (W. Lohmann, FCAL)

Main argument \rightarrow technical / operational for the collider