

Design Challenges of the 2 mrad Scheme

Olivier Napoly CEA/DAPNIA/SACM

Workshop on ILC Small Angle Interaction Region 19-20 October 2006

dapnia Saciay

- Luminosity at 2 mrad Crossing
- Orbit and Dispersion matching in 4 T Field
 - Final Doublet Magnets
 - Extraction Optics
 - Dipoles and Quadrupoles
 - Beam losses handling
 - Tunnel Length
 - Costs
 - Post IP diagnostics

Outline

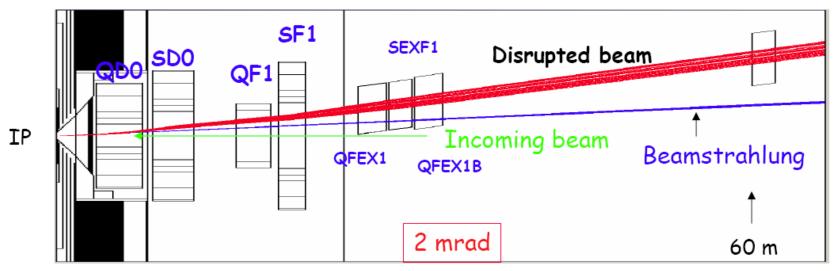
Luminosity at 2 mrad crossing-angle dapnia $\mathcal{L}_{\mathbf{0}}$ $\tan\left(\frac{\alpha}{2}\right)\frac{\sigma_z}{\sigma_x^*}$ saclay Med Q P Nominal Large Y Low P High L **TESLA** 626.5 495 452 452 554 443 nm σ_x 200 300 500 200 150 300 μm σ_{z} % L/LO0.90 0.70 0.91 0.95 0.88 0.91

• Beam-beam effect usually increases the luminosity loss

 Crab-crossing via dispersion matching will depend on E vs. z linear correlation Orbit and Dispersion matching in 4 T solenoid

dapnia

Single beam
$$\delta y^* = \delta(Dy)^* = \frac{1}{2} (L_S/2)^2 (B_S \alpha/2) / (B\rho)$$

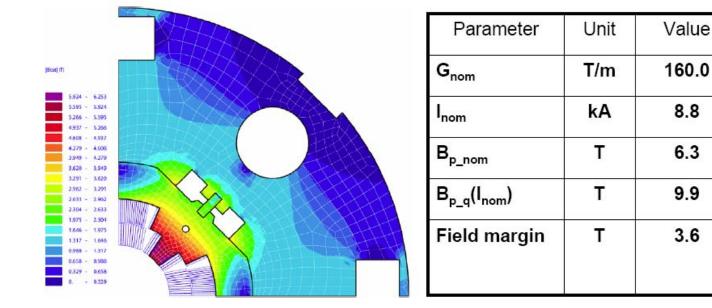

saclay

		LDC	SiD	GLD
B _S	Т	4	5	3
L _S	m	7	5.54	9
δy*	μm	29.4	23.0	36.5
σ* _y	nm	5.7	8.1	3.8

I hope I am wrong ; 14 mrad is 7 times more !!

Final Doublet Magnets

Magnet type	Bore radius, mm	Field at radius, T	Eff. length, m	type
Quad QD0	35	5.6	2.5	SC
Sextupole SD0	88	4.0	3.8	SC
Quad QF1	10	0.68	2.0	NC
Sextupole SF1	112	2.12	3.8	NC
SeptumQEX1A	113	1.33	3.0	NC


cf. Robert and Gian Luca 's discussion

Final Quadrupole QD0 from LHC IR QD0 Design (V1. Kashikhin)

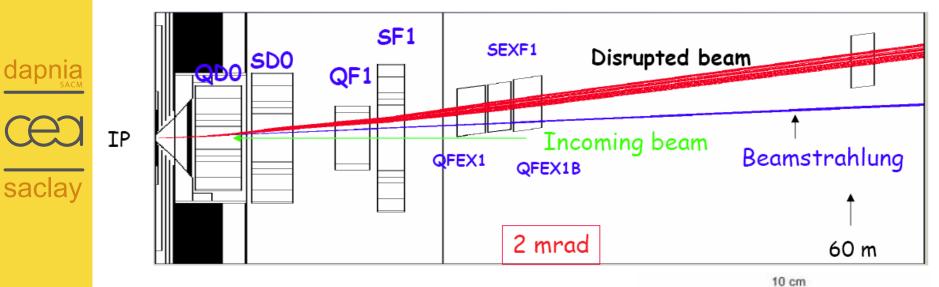
saclay

QUESTIONS:

- Is there an Iron yoke and do we need it ?
- Field margin in LDC, SiD, and GLC solenoid (0.9 T in 2.7 T)?
- Mechanical support and stability in 1 mrad angle w.r.t. B0 axis ?
- Is Nb3Sn the way to go ?

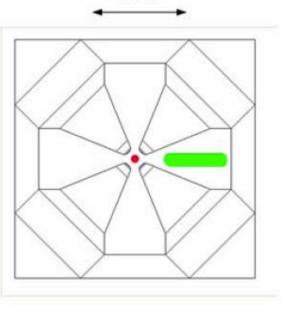
Final Sextupole SD0

Design close to LHC IR Quadrupoles


saclay

Strand diameter	0.808 mm	Component: BMOI 4.00669E-03	3.098451481	6.192896273
Jc at B=5 T, 4.2	2750 A/mm ²	0.8.0 0.0		0.16 0.2 0.22 X [m]
NbTi Superconducting cable	LHC IR inner	0.02-		
Number of turns	22(inner) + 27(outer)	0.04		
Lorentz force, Fy	-83.2 t/m	0.06-		
Lorentz force, Fx	56.5 t/m	0.08-		
Field energy	376 kJ/m	0.1		
Iron core field (max)	3.8 T	0.12-		
Coil maximum field	6.2 T	0.16		
Calculated strength	519.2 T/m ²	Y [m] 0.16		
Current	7 kA		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
Coil ampere-turns	343 kA			

QUESTIONS (same):


- Is there an Iron yoke and do we need it ?
- Field margin in LDC, SiD, and GLC solenoid (0.9 T in 2.7 T)?
- Mechanical support and stability in 1 mrad angle w.r.t. B0 axis ?
- Is Nb3Sn the way to go?

Final Quadrupole QF1 and Sextupole SF1

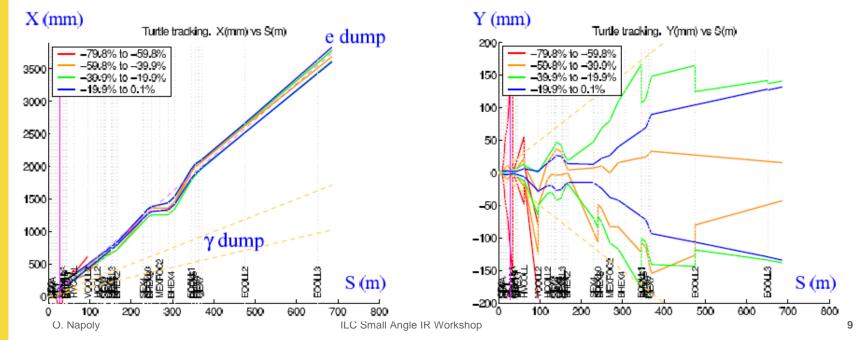
Assuming warm magnets, can one design them with horizontal clearance apertures,
i.e. no yoke in the x > 0 half-plane ?

Extraction diagnostics dipoles

Present design assumes 49 dipoles, 400 mm full gap, 2 m long, 0.42 T @ 250 GeV beam energy, per beam line

- •18 BX dipoles for horizontal extraction, with vertical gap
- 32 BY dipoles for the vertical chicanes, with horizontal gaps

19/10/2006


daphia

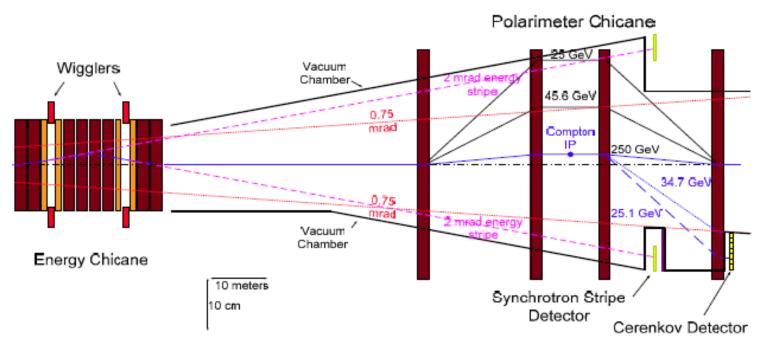
300 kW per dipole at 1 TeV c.m. ♦ 30 MW total both sides.

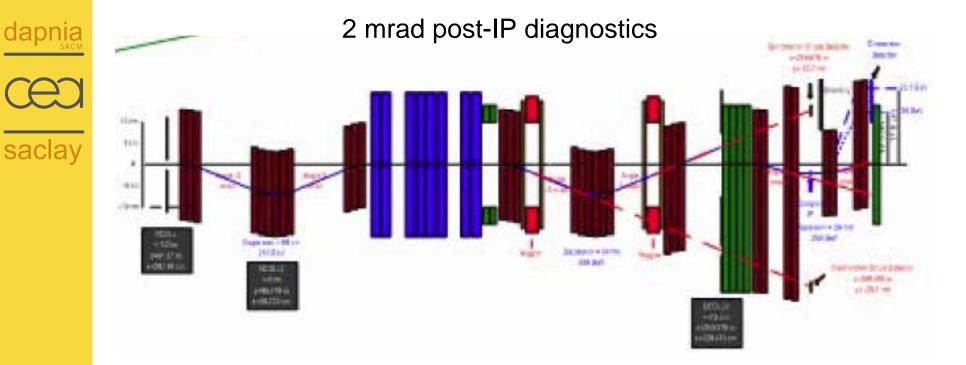
QUESTION #1:

• Do we need the large aperture all along ?

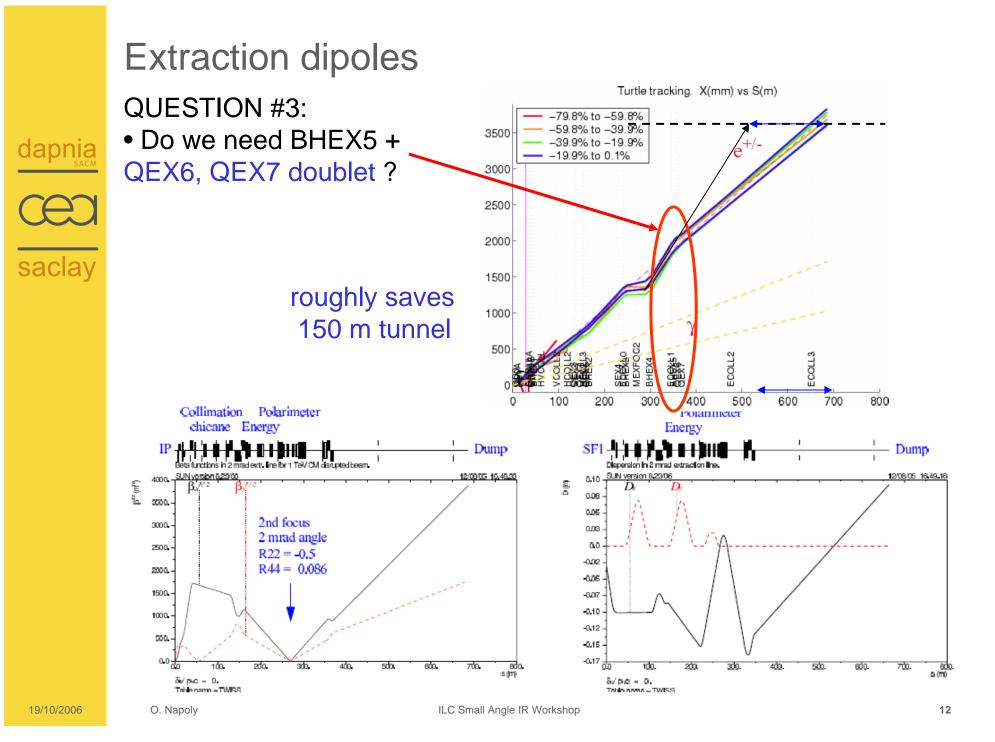
The magnet power scales like the aperture and energy squared

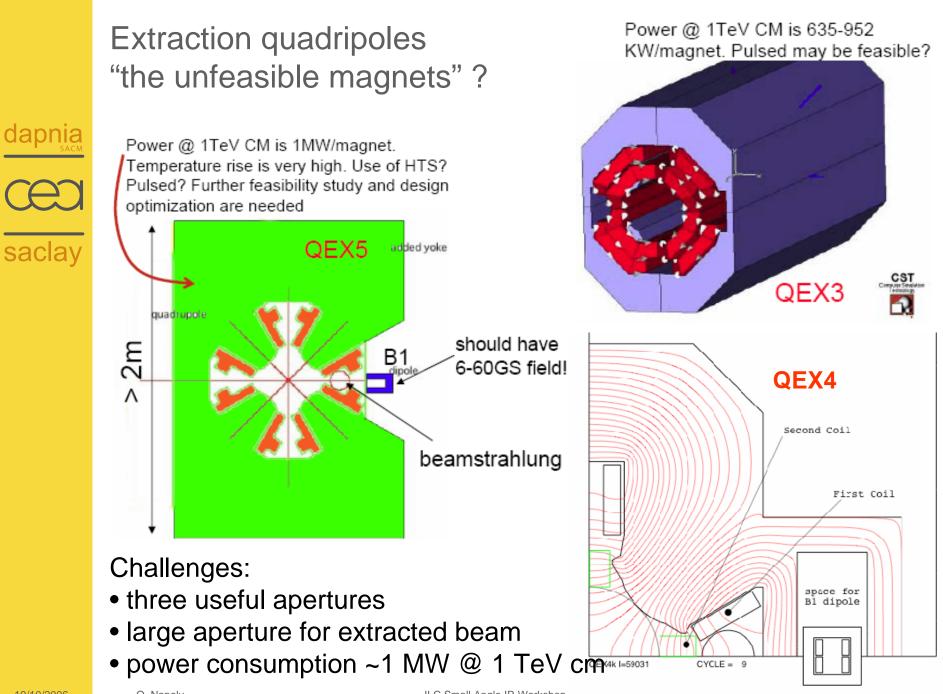
Diagnostics chicane dipoles




Figure 4: Diagram of the Energy Chicane and Polarimeter Chicane in the 20 mrad extraction line.

QUESTION #2:


• Do we need that many magnets ? 12 + 12 + 8 BY dipoles for the vertical chicanes with horizontal gaps


0 + 8 + 4 BY dipoles are used in the 20 mrad scheme

Diagnostics chicanes dipoles

QUESTION #2 bis: • Do we need the extra quadripoles QEX3,QEX4,QHEX5 and dipoles BHEX2, BHEX3 ?

