

Jan Strube
University of Oregon

ZVTOP

- compute probability tubes for each track
- find two-track maxima
- cluster unresolved maxima
- disambiguate the clusters and uniquely assign the tracks to the clusters
- fit the tracks in a cluster to a common point
- prune tracks with large chi2
- find the seed vertex and compute pt-corrected mass

ZVTOP

Tracks are assigned
Gaussian probability tubes
computed from the error
matrix

The maximum overlap is calculated

P_T-corrected Mass for Flavor Tagging

$$m_{P_T} = \sqrt{\left(\sum_{\text{tracks}} m_{\pi^{\pm}}\right)^2 + |P_T^{\text{Vtx}}|^2 + |P_T^{\text{Vtx}}|}$$

- The P_T-corrected
 mass already by itself
 gives quite reasonable
 results
- But you can see the contamination of B events in the D sample

ZVTOP @ SLD

- Developed by Dave Jackson
- Topological vertex finding, <u>not</u> a kinematic vertex reconstruction
- Written in a FORTRAN 77 dialect
- Evolved over the course of the experiment and resulted in a paper: NIM A388:247-253, 1997
 - The code has features that did not make it into the paper

hep.lcd

- Java analysis and reconstruction framework for the NLC
- ZVTOP was ported to hep.lcd by Wolfgang Walkowiak
 - Presentation of capabilities Snowmass 2001
- Direct translation of FORTRAN code to Java
- Various parts were working with different levels of reliability
 - ZVTOP seems to be working OK
 - GhostTrack was never finished
- Tied to specifics of hep.lcd, no unit tests

org.lcsim

- ZVTOP did not survive transition from hep.lcd
 - The original author left, hardly any documentation
- New Approach:
 - Start afresh based on the paper
 - Make necessary adjustments to new environment
 - Implement the algorithm in the spirit of the new framework and the new language
 - Code re-use
 - HelixSwimmer
 - Kalman Fitter
 - Integration
 - Event Display Jan Strube University of Oregon
 - Fully reconstructed objects

Code reuse

- HelixSwimmer
 - Paul Avery's algorithms
 - Implemented since Snowmass 2005
 - Today the default swimmer in org.lcsim
- Kalman Filter
 - Based on Grab and Luchsinger
 Comput.Phys.Commun.76:263-280,1993
 - Generic implementation, can be used for other analyses
 - Formalism suitable for incorporation of neutrals
 - Basis for extending ZVTOP and integrating into PFA

 Jan Strube University of Oregon

Kalman filter

- Following is the resolution of the displaced vertex J/Psi --> mu mu
- Fast MC Tracks
- Results are without smoothing
- Possible Extensions: Adaptive Kalman filtering as implemented at the Tevatron
 - rather than having a chi2 cut, use chi2 weighting of all tracks

ZVTOP in org.lcsim

- The different components of ZVTOP work
- Many improvements over previous code
 - Full swimmer rather than parabolic approximation
 - Fitter algorithm to deal with neutrals
 - Fully reconstructed Tracks
 - Integration into event display
- Careful integration of all parts in order to maintain usability
- More users of each component
 - → more stability

Competing implementations

- LCFI has a dedicated group working on ZVTOP
 - One full-time(?) grad student
 - Dave Jackson as advisor
- Sourceforge project
- Attempting a full implementation
 - ZVTOP
 - Ghost track algorithm
- Validation studies underway
 - Comparison with SLD code

Summary

- ZVTOP is an essential algorithm for physics studies at an ILC detector
- The implementation in org.lcsim was created with longevity and extensibility in mind
 - javadoc
 - high-level objects
 - PFA, Neutrals
- Testing, validation, documentation will be a lot of work fun
 - → get involved now