#### Mount stabilization for Shintake monitor-3

3rd ATF2 project meeting (Dec. 19, 2006)

Tatsuya KUME Mechanical Engineering Center, High Energy Accelerator Research Organization (KEK)



### Contents

- About Shintake monitor and results in FFTB
- Studies for stabilization around IP —Interferometer and final focusing magnet
- Proposals and subjects to be studied for mount stabilization (3 proposals)
  Proposal 1: Individual rigid mounts
  - -Proposal 2: Mount on a stabilized common table
  - –Proposal 3: Individual mounts with feedback system

# Schematics of Shintake Monitor

Laser fringe(/Compton) beam size monitor



# System schematics of Shintake monitor in Final Focus Test Beam (FFTB)



# Results of Shintake monitor in FFTB (1993-1997)

- Experimentally measure size of the converged electron beam to be 70 nm in radius ( $\sigma$ ).
- Operated without any anti vibration equipments –without active control, nor passive air suspension table, etc.
- Signal fluctuation in Gamma corresponded to be 40 nm with >10Hz of jitter was observed.

# System performance expected for Shintake monitor in ATF2 project

• Measure size of electron beam converged to 35 nm of radius ( $\sigma$ )

#### Methods to realize expected performance

• Use shorter (1064->532 nm) wavelength of laser

->Obtain higher modulation of  $\gamma$ -ray for narrower (60->35nm-in design) electron beams

Observe and control interference fringes

->Stabilize phase and visibility of interference fringes

Analyze structure and mount of interferometer

->Stabilize and improve rigidity for mount and body of interferometer

# Goal of stabilization for Shintake monitor

In order to measure beam size with nm resolution



Floor

## What affects stability?

Relative position stability between interference fringes and electron beam



# What does not so seriously affect stability?

changes of relative position between input beam and f.f. magnet are canceled by focusing effect of f.f. magnet.



#### In order to obtain good stability



Proposal 1 for relative stability around IP 1:

# Rigid mount on floor

using individual rigid mount for supporting interferometer and f.f.magnet

Confirm rigidity of interferometer body



Proposal for relative stability around IP 2:

## Mount on a common stabilized table

using an anti-vibration common table for interferometer and f.f.magnet



Proposal for relative stability around IP 3:

## Feedback position between beam and fringes

in case using individual mount for interferometer and f.f.magnet with feedback



# Summary

- It's necessary to stabilize relative position between interference fringes and electron beam for precise beam size measurement.
- The relative stability are to be obtained by
  - stabilizing relative position between interferometer and interference fringes.
  - stabilizing relative position between interferometer and final focusing magnet or between interferometer and beam.
- It's necessary to confirm rigidity of interferometer.
- Proposal 1 and 2 are recommended for mechanical stabilization around IP.

## Plan

- Confirmation rigidity of interferometer body is planned (under cost estimation).
  - by measuring impulse response of the interferometer
  - not by simulation (<-problem of accuracy of the analysis models)</li>
- Rigid mount for the interferometer is to be designed using the results as a first step.