

Ground Stabilisation with the CERN STACIS 2000 Stable Active Control Isolation System

LAViSta

Laboratories in Annecy working on Vibration Stabilisation

Catherine ADLOFF

Benoît BOLZON

Franck CADOUX

Yan BASTIAN

Benoit BOLZON

Andrea JEREMIE

Jacques LOTTIN

Yannis KARYOTAKIS

Claude GIRARD

Nicolas GEFFROY

Laurent BRUNETTI

Fabien FORMOSA

ATF2 Project Meeting 18-20 December 2006¹

Presentation of the system

Isolator:

- \rightarrow Stiff rubber: Passive damping
- \rightarrow One vertical geophone/actuator pair
- \rightarrow Two horizontal geophone/actuator pairs

REAR VIE

Ísblator

FRONT VIEW

OPTIONAL

PC OPTIONAL

TERMINATOR PLUG

о

Presentation of the system

Active Degrees of Freedom	6
Active Bandwidth	0.5 to >100Hz
Peak in Transmissibility (active system)	0.4Hz
Resonant Transmissibility	1.1
Isolation Margin	>90% above 2Hz
Settling Time (90% down from peak)	200ms
Static Load Capacity/Isolator	182kg to 500kg
Number of Isolators	3 or 4
Maximum Displacement	15μm peak-peak below 10Hz

✓ Active degrees of Freedom: X, Y, Z directions, roll, pitch and yaw

✓ Advantage/Disadvantage of the use of 3 isolators instead of 4:

 \rightarrow Better ground-to-table transverse and longitudinal transmission

 \rightarrow Slightly worse vertical stability

Adopt the four feet system because vertical tolerances tighter than the horizontal ones

Experimental set-up

✓ Sensors used to measure ground and table vibrations:

Sensors	Guralp CMG-40T	ENDEVCO86
Sensitivity	1600V/m/s	10V/g
Frequency range	0.033-50Hz	0.01-100 Hz
Quantity	2	2

✓ Limitation of the measurement:

 \rightarrow Guralp sensors:

- From 0.033Hz: Frequency response not flat below
- To 50Hz: Frequency response not flat above

\rightarrow ENDEVCO sensors:

- From 10Hz: Electronic noise to high below
- To 100Hz: Frequency response not flat above

Experimental set-up

✓ One Guralp velocity sensor on the floor and the other one on the table to measure low frequency vibrations (0.1Hz to 50Hz)

✓ One ENDEVCO accelerometer on the floor and the other one on the table to measure medium frequency vibrations (10Hz to 100Hz)

✓ One microphone on the floor to study acoustic effect on the behaviour of the table

✓ Simultaneous measurements of the 4 sensors

✓ Measurements in the X, Y and Z direction when the table is active and passive

Vertical direction: Integrated RMS

✓ Below 0.5Hz: No amplification or damping on the table

✓Above 0.5Hz: Amplification and damping begins only above ~30Hz

Transverse direction: Integrated RMS

✓ Below 0.5Hz: No Amplification or damping on the table

✓ Above 0.5Hz: Amplification on the table

Longitudinal direction: Integrated RMS

✓ Below 0.5Hz: No amplification or damping on the table

✓Above 0.5Hz: Amplification on the table

Transfer function of the table integrated RMS

✓ From 0.1Hz to ~0.5Hz: No damping or amplification on the table in the 3 directions

✓ Above ~0.5Hz: Amplification on the table in the 3 directions

 \rightarrow Vertical direction: factor 1.5 of amplification above 1Hz

✓ Coherence between passive table and ground: fall above 20Hz

Vertical direction: integrated RMS

✓ **Below 0.8Hz:** Amplification on the table

✓ Above 0.8Hz: Damping on the table

→ Factor 7 of damping above $1.5Hz_{11}$

Transverse direction: Integrated RMS

✓ Below 1.1Hz: Amplification on the table ✓ Above 1.1Hz: Damping on the table

 \rightarrow Factor 2 of damping above 1.6Hz

Longitudinal direction: Integrated RMS

✓ Below 0.7Hz: Amplification on the table ✓ Above 0.7Hz: Damping on the table

 \rightarrow Factor 2.5 of damping above 1.1Hz

Summary: Transfer function of the table integrated RMS

✓ From 0.1Hz to ~0.8Hz: Amplification on the table in the 3 directions

 \rightarrow Vertical direction: up to a factor 1.5 of amplification (at 0.6Hz)

✓ Above ~0.8Hz: Damping on the table in the 3 directions

→ Vertical direction: factor 0.15 of damping at 1.5Hz

Coherence

 \checkmark Below 0.8Hz: Good coherence between the ground and the active table

✓ Above 0.8Hz: fall of this coherence

4. Discussion of the use of the table for ATF2

✓ Vibration tolerances at ATF2

 \rightarrow Tightest in the vertical direction: FD ~ 5nm

✓ Today at ATF2

- \rightarrow Active beam-based feedback < 0.1Hz
- \rightarrow Vertical Integrated RMS vibration above:
 - 0.1Hz ~300 nm
 - 1Hz ~80 nm

 \Rightarrow Would need at least ~0.01 damping factor between 0.1 and 1 Hz in the event of 100% incoherent between FD and IP

4. Discussion of the use of the table for ATF2

 Low frequency vibr 	ations:	0.1Hz	-	1Hz
\rightarrow Expected vibration	is in the vertical direction:	300nm	\rightarrow	80nm
Table (Vertical direction)	Passive	Active		
Amplification	1	1.5		
Coherence Table/Floor	0.9	0.9		
Passive table better because of the amplification in the active mode				

 Medium frequency vibrations: 	1Hz -	20Hz
--	-------	------

 \rightarrow Expected vibrations in the vertical direction: 80nm \rightarrow 2nm

Table (Vertical direction)	Passive	Active
Amplification	1.5	0.1
Coherence Table/Floor	0.9	0.3

> Loss of coherence in the active mode

 \rightarrow Even if FD motion very small, relative motion between FD and Shintake big

Passive table better

Description of the Stretched wire system

Stretched wire system: Measurement of low drifts of the table position with respect to ground in horizontal and vertical directions

 $\checkmark\,$ As reference a metal wire is stretched all along the honeycomb support structure and is fixed to the ground

✓ Capacitive, noncontact sensors are used to measure the wire position with a sub-micrometre resolution

Four inner metal surfaces provide two position measurement per measuring plane

Description of the Stretched wire system

Table 4.8: Technical specifications of the WPS2-D stretched-wire system by Fogale Nanotech.

Parameter	Specification
Number of pick-up sensors	3
Measurement range (both planes)	$\pm 5\mathrm{mm}$
Output voltage	0 V-10 V
Average sensitivity (both planes)	$1\mathrm{V/mm}$
Linearity (full range)	$\pm 0.150\mathrm{mm}$
Linearity $(\pm 0.5 \text{ mm})$	$pprox \pm 1.5 imes 10^{-3} \mathrm{mm}$
Horizontal to vertical coupling (full range)	$0.8\mathrm{mm}$
Uncertainty of reference centre	$\pm 0.1\mathrm{mm}$
Thermal drift	$0.5\mu\mathrm{m}/^{\circ}\mathrm{C}$
Bandwidth (1st order)	$10\mathrm{Hz}$
Measurement noise (full bandwidth, 3 m wire)	$0.3\mu{ m m}$

✓ Resolution over the full bandwidth: 0.3um

✓ Slow acquisition of 1Hz: nominal resolution in the tens of nanometre range

Measurements performed

- Measurement of vertical and horizontal table positions versus time
- Total measurement time: approximately eight days
- ✓ Acquisition frequency: 1Hz
 - → Stretched wire system resolution: approximately 30nm
- Ambient temperature versus time measured in the vicinities of the table

Work done by Stefano Redaelli at CERN

✓ Horizontal position: Variations three to four times smaller

✓ Explanation: Decrease of temperature → Lowering of table height
 ⇒ Probably due to the shrinking of the rubber in each isolator

✓ Details of temperature variations on the vertical table alignment:

✓ Sudden temperature variation of approximately 1.5 ∘C

→ Slow drift of the table vertical position, with a maximum of \approx 20 µm after 5 hours → Variation of 1 nm per second 22

Conclusion

✓ At low and medium frequency: passive mode better than active because:

- Low frequency: amplification reaches factor 1.5
- Medium frequency: breakdown of coherence

✓ Better to find a passive system with no eigenfrequencies up to 50Hz
 → Will investigate for example a stiff table

✓ CLIC table adapted for frequencies from 1Hz to 100Hz

 \checkmark Slow drift of the table for a temperature variation of 3°C:

- \rightarrow Z direction: 40um table-to-ground motion
- \rightarrow X, Y direction: 3 or 4 times smaller

Program at LAPP

•4 Movers being shipped from SLAC to Annecy =>vibration measurements with equivalent masses (like 4 magnets)

•Possibility of shipping modified FFTB magnets first to Annecy then to KEK for realistic vibration measurements and comparison to simulation

•Evaluating the usefulness of the CLIC table for ATF2 :

Low frequency measurements (maybe comparative capacitive sensors) but difficult to support

•Vibration measurements at KEK with Annecy material

•Modify movers that are 8cm too high