BSM using a pattern target

Y.Honda 2006/Dec./18 ATF2 project meeting

motivation

- missing range of beam size monitors was pointed out in the previous project meeting.
 - Shintake monitor (532nm wavelength) works <350nm
 - carbon wire scanner (5um dia.) > 1um, broken by a small beam
 - blind beam tuning in the range of 1um to 350nm?
- requirements
 - relative measurement is fine for beam tuning
 - real time response (~min.)
 - near the IP, compact device

principle

800

600

400

0.8u

- fluctuation of the signal in many pulses assuming random beam position
- distance of the two peaks is a good measure to estimate the beam size
 - beam size is bigger, distance becomes narrower
 - sensitive if beam size is in the range of 0.2~0.7 pattern unit

requirements on the target

- structure of the pattern
 - pattern unit should be ~1.5um to measure 350nm~1um beam size
 - thin film to prevent multiple scattering
 - high contrast, say better than 10%
 - edge sharpness may be not so important for relative measurement, uniformity should be important
- size of the target
 - assume 1000 pulses (10min.) for one measurement
 - slide ~10um in each pulse makes 10mm of length for one measurement
 - 1m length target is needed if we assume 100 measurements in one week
- system design
 - reel film mechanism
 - use plate along zigzag line

simulation

- Geant4 simulation
 - check the effect of multiple interaction
 - signal yield
- setup
 - aluminum 10um film
 - measure energy deposit of neutral background
- result
 - edge of the pattern is clean, multiple scattering is negligible
 - signal yield is 2000MeV/10000electrons
 - comparison with tungsten wire of 10um diameter (wire-scanner).
 - background strength is 10% of the wire-scanner, good enough to detect

fabrication

press

- expensive and low throughput methods are not applicable since the target will be comsumed in a few weeks
- imprint method
 - make replications of a mold by imprinting it to samples
 - once the mold was made, the replications could be made in low cost and high throughput
- candidates
 - heat imprinting on a polymer film
 - room temp. direct imprint
 - mold should be a hard material such as SiC or Si
 - electron beam lithography
 - pure aluminum for the sample (soft material)
 - press ton/cm^2

summary

- A new idea to cover the range between Shintake-monitor and wirescanner
 - similality: mixture of laser fringe target and wire-target
 - difference: statistical approach, expendable target
 - advantage: less expensive, compact, not affected by beam jitter
- issues
 - technology already exists
 - engineering to realize the mechanism of the device
 - radiation